Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Doanh Nguyễn Đình

Cho 3 số x, y, z khác 0 thỏa mãn 1/x+1/y+1/z=1. chứng minh rằng 1/x^4+1/y^4+1/z^4>=1/xyz

Lightning Farron
17 tháng 3 2017 lúc 18:25

Let \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\) we need prove:

\(\left\{{}\begin{matrix}a+b+c=1\\a^4+b^4+c^4\ge abc\\a,b,c\ne0\end{matrix}\right.\)

By AM-GM we have: \(\left\{{}\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\b^4+c^4\ge2\sqrt{b^4c^4}=2b^2c^2\\c^4+a^4\ge2\sqrt{c^4a^4}=2c^2a^2\end{matrix}\right.\)

\(\Rightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\left(1\right)\)

By AM-GM we have:

\(\left\{{}\begin{matrix}a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge b^2\cdot2\sqrt{a^2c^2}=2b^2ac\\b^2c^2+c^2a^2=c^2\left(b^2+a^2\right)\ge c^2\cdot2\sqrt{b^2a^2}=2c^2ab\\c^2a^2+a^2b^2=a^2\left(b^2+c^2\right)\ge a^2\cdot2\sqrt{b^2c^2}=2a^2bc\end{matrix}\right.\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2\ge b^2ac+c^2ab+a^2bc\)

\(=abc\left(a+b+c\right)=abc\left(a+b+c=1\right)\left(2\right)\)

From \((1);(2)\) we are done !!


Các câu hỏi tương tự
Phan Tiến Nhật
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Rosie
Xem chi tiết
tran thi mai anh
Xem chi tiết
Big City Boy
Xem chi tiết
Thanh Nguyenthi
Xem chi tiết
Nguyễn Thu Hương
Xem chi tiết