Bài 9: Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Cho 3 số thực x, y, z đôi một khác nhau thỏa mãn : \(\left(y-z\right)\sqrt[3]{1-x^3}+\left(z-x\right)\sqrt[3]{1-y^3}+\left(x+y\right)\sqrt[3]{1-z^3}=0\)

CMR : \(\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)=\left(1-xyz\right)^3\)

Thầy mình gợi ý áp dụng t/c: Nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc đc thế này

\(\left(y-z\right)^3\left(1-x^3\right)+\left(z-x\right)^3\left(1-y^3\right)+\left(x-y\right)^3\left(1-z^3\right)=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)chưa biết làm thế nào cả

Lightning Farron
8 tháng 6 2017 lúc 0:14

Áp dụng bổ đề trên kia ta có:

\((y-z)^3(1-x^3)+(z-x)^3(1-y^3)+(x-y)^3(1-z^3)\)

\(=3(x-y)(y-z)(x-z)\sqrt[3]{(1-x^3)(1-y^3)(1-z^3)}\)

Xét VT: \((y-z)^3(1-x^3)+(z-x)^3(1-y^3)+(x-y)^3(1-z^3)\)

\(=(y-z)^3+(z-x)^3+(x-y)^3-[(xy-xz)^3+(yz-xy)^3+(xz-yz)^3]\)

\(=3(x-y)(y-z)(x-z)-3xyz(x-y)(y-z)(x-z)\)

\(=3(x-y)(y-z)(x-z)(1-xyz)\).Suy ra

\(3(x-y)(y-z)(x-z)(1-xyz)\)

\(=3(x-y)(y-z)(x-z)\sqrt[3]{(1-x^3)(1-y^3)(1-z^3)}\)

\(\Leftrightarrow (1-x^3)(1-y^3)(1-z^3)=(1-xyz)^3\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
:vvv
Xem chi tiết
Ngô Phương Tú
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Thu Hien Tran
Xem chi tiết
Lê Hồng Ánh
Xem chi tiết
Nguyễn Ngọc Nhã Hân
Xem chi tiết
Thu Hien Tran
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết