\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{abc}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\Leftrightarrow a+b+c=0\) \(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=-c^3\Rightarrow\left(a+b\right)^3+c^3=0\)
Ta có:
\(a^3+b^3+c^3=a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)
\(=-3ab\left(a+b\right)=3abc⋮3\) (đpcm)