Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+a+c+a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
Do \(\dfrac{a}{b+c}=\dfrac{1}{2}\Rightarrow b+c=2a\) (1)
\(\dfrac{b}{a+c}=\dfrac{1}{2}\Rightarrow a+c=2b\) (2)
\(\dfrac{c}{a+b}=\dfrac{1}{2}\Rightarrow a+b=2c\) (3)
Thay (1); (2) và (3) vào \(P\) ta có:
\(P=\dfrac{2a}{a}+\dfrac{2b}{b}+\dfrac{2c}{c}\)
\(\Rightarrow P=2+2+2=6\)
Vậy \(P=6.\)
+) Xét \(a+b+c=0\Rightarrow\left[\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)
Ta có: \(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
+) Xét \(a+b+c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+b}{b}=\frac{a+b}{c}=2\)
\(\Rightarrow P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
Vậy P = -3 hoặc P = 6