Từ giả thiết \(-2\le a,b,c\le3\) suy ra:
\(\left\{{}\begin{matrix}\left(a+2\right)\left(a-3\right)\le0\\\left(b+2\right)\left(b-3\right)\le0\\\left(c+2\right)\left(c-3\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-a-6\le0\\b^2-b-6\le0\\c^2-c-6\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a\ge a^2-6\\b\ge b^2-6\\c\ge c^2-6\end{matrix}\right.\)
\(\Rightarrow M=a+b+c\ge\left(a^2+b^2+c^2\right)-18=4\)
\(min=4\Leftrightarrow\left(a;b;c\right)=\left(2;3;3\right)\) và các hoán vị