Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{2a+b}{c}=\frac{2b+c}{a}=\frac{2c+a}{b}=\frac{2a+b+2b+c+2c+a}{a+b+c}=\frac{3b+3c+3a}{a+b+c}=3\)
=>2a+b=3c; 2b+c=3a; 2c+a=3b
\(\left(\frac{2a+b}{c}\right)+\left(\frac{a}{2b+c}\right)+\left(\frac{3b}{2c+a}\right)\)
\(=\frac{3c}{c}+\frac{a}{3a}+\frac{3b}{3b}=3+\frac13+1=4+\frac13=\frac{13}{3}\)