cd ở đâu bạn???
cd ở đâu bạn???
Cho đường tròn (O;5cm) và (O'2cm) trong đó OO' = 9cm. Vẽ tiếp tuyến chung ngoài AB (A\(\in\)(O)), (B\(\in\)(O')) và tiếp tuyến chung trong CD (C\(\in\)(O)), (D\(\in\)(O')). Tính AB và CD
Cho hai đường tròn (O; 9cm) và (O' 4cm) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B ∈ (O), C ∈ (O’). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I.Tính BC
M.Bài 6.Cho hai đường tròn (O; R) và (O; R) tiếp xúc ngoài nhau tại M. Hai đường tròn (O) và (O) cùng tiếp xúc trong với đường tròn lớn (O; R) lần lượt tại E và F. Tính bán kính Rbiết chu vi tam giác OOOlà 20cm.
Bài 7.Cho đường tròn (O; 9cm). Vẽ 6 đường tròn bằng nhau bán kính R đều tiếp xúc trong với (O) và mỗi đường tròn đều tiếp xúc với hai đường khác bên cạnh nó. Tính bán kính R.
Bài 8.Cho hai đường tròn đồng tâm. Trong đường tròn lớn vẽ hai dây bằng nhau AB = CD và cùng tiếp xúc với đường tròn nhỏ tại M và N sao cho AB CD tại I. Tính bán kính đường tròn nhỏ biết IA = 3cm, IB = 9cm.
Bài 9.Cho ba đường tròn O O O1 2 3( ),( ),( )cùng có bán kính R và tiếp xúc ngoài nhau từng đôi một. Tính diện tích tam giác có ba đỉnh là ba tiếp điểm.
Bài 10.Cho hai đường tròn (O) và (O) tiếp xúc nhau tại A. Qua A vẽ một cát tuyến cắt đường tròn (O) tại B và cắt đường tròn (O) tại C. Từ B vẽ tiếp tuyến xyvới đường tròn (O). Từ C vẽ đường thẳng uv song song với xy. Chứng minh rằng uvlà tiếp tuyến của đường tròn (O).
Bài 11.Cho hình vuông ABCD. Vẽ đường tròn (D; DC) và đường tròn (O) đường kính BC, chúng cắt nhau tại một điểm thứ hai là E. Tia CE cắt AB tại M, tia BE cắt AD tại N. Chứng minh rằng:a) N là trung điểm của AD.b) M là trung điểm của AB.
Bài 12.Cho góc vuông xOy. Lấy các điểm I và K lần lượt trên các tia Oxvà Oy. Vẽ đường tròn (I; OK) cắt tia Oxtại M (I nằm giữa O và M). Vẽ đường tròn (K; OI) cắt tia Oytại N (K nằm giữa O và N).
a) Chứng minh hai đường tròn (I) và (K) luôn cắt nhau.
b) Tiếp tuyến tại M của đường tròn (I) và tiếp tuyến tại N của đường tròn (K) cắt nhau tại C. Chứng minh tứ giác OMCN là hình vuông.
c) Gọi giao điểm của hai đường tròn (I), (K) là A và B. Chứng minh ba điểm A, B, C thẳng hàng.d) Giả sử I và K theo thứ tự di động trên các tia Oxvà Oysao cho OI + OK = a(không đổi). Chứng minh rằng đường thẳng AB luôn đi qua một điểm cố định.
cho (O;R) và (O'r) tiếp xúc tại A. Đường thẳng OO' cắt (O;R) (O'r) tại B,C(B,C khác A).Tiếp tuyến chung ngoài EF(E thuộc (O), F thuộc (O'). BE cắt CF tại M.
1. Cm; MA là tiếp tuyến chung của (O)và (O')
2. Tính EF theo R và r.
3. Định dạng các đường tròn (O;R) và (O'r) sao cho S tam giác BCM lớn nhất.
cho (O;R) và (O'r) tiếp xúc tại A. Đường thẳng OO' cắt (O;R) (O'r) tại B,C(B,C khác A).Tiếp tuyến chung ngoài EF(E thuộc (O), F thuộc (O'). BE cắt CF tại M.
1. Cm; MA là tiếp tuyến chung của (O)và (O')
2. Tính EF theo R và r.
3. Định dạng các đường tròn (O;R) và (O'r) sao cho S tam giác BCM lớn nhất.
cho 3 điểm O , A , I thẳng hàng theo thứ tự đó vẽ đường tròn ( O , OA ) và ( I , IA ) ( OA > IA ) a ) Hãy xác định vị trí của 2 đường tròn O b ) Tiếp tuyến chung ngoài BC ( B thuộc O ) C thuộc I cắt đường thẳng OI tại S. Cho biết OA = 3 cm , Al = 1 cm . Tính độ dài các đường thẳng SO , SI
Cho 2 đường tròn (O;R) và (O'R') nằm ngoài nhau. Một đường thẳng d tiếp xúc trong với cả 2 đường tròn tại A,B. Một đường thẳng d' ≠ d tiếp xúc trong với cả 2 đường tròn tại C,D.
Cm: a) AB=CD.
b) Các đường thẳng AB,CD cắt nhau trên đường thẳng OO'
cho đường tròn (O;R) từ điểm A ở bên ngoài đường tròn sao cho OA = 2R. Kẻ 2 tiếp tuyến AB,AC với đường tròn ( B,C tiếp điểm)
a) vẽ đường kính COD. C/Minh BD//AO
b) gọi E là 1 điểm thuộc cung nhỏ BC. kẻ tiếp tuyến với đường tròn tại E cắt AB và AC theo thức tự M,N. TÍNH GÓC MON VÀ chu vi tam giác AMN
cho 2 đường tròn (O) , (O') ở ngoài nhau . Kẻ các tiếp tuyến chung ngoài AB , CD ( A,C thuộc (O); B và D thuộc ( O') . Tiếp tuyến chung trong GH cắt AB tại E , CD tại F ( G thuộc ( O) , H thuộc ( O') . CM AB = EF và EG = FH