Cho 2 đa thức :
P(x)=\(-2x^2+3x^4+x^3+x^2-\dfrac{1}{4}x\)
Q(x)=\(3x^4+3x^2-\dfrac{1}{4}-4x^3-2x^2\)
a) Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến
b) Tính P(x)+Q(x) và P(x) - Q(x)
c) Chứng tỏ x=0 là nghiệm của đa thức P(x) nhưng không là nghiệm của Q(x)
Giúp mình với ạ <3 Cảm ơn mn rất nhiều ^^
a,
Trước khi sắp xếp ta thu gọn các đa thức trên
P(x)=-2x\(^2\)+3x\(^4\)+x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)x
=(x\(^2\)-2x\(^2\))+3x\(^4\)+x\(^3\)-\(\dfrac{1}{4}\)
=-1x\(^2\)+3x\(^4\)+x\(^3\)-\(\dfrac{1}{4}\)x
Q(x)=3x\(^4\)+3x\(^2\)-\(\dfrac{1}{4}\)-4x\(^3\)-2x\(^2\)
=(3x\(^2\)-2x\(^2\))+3x\(^4\)-4x\(^3\)-\(\dfrac{1}{4}\)
=x\(^2\)+3x\(^4\)-4x\(^3\)-\(\dfrac{1}{4}\)
Sau khi thu gọn ta đi sắp xếp các đa thức theo lũy thừa giảm dần của biến
P(x)=3x\(^4\)+x\(^3\)-1x\(^2\)-\(\dfrac{1}{4}\)x
Q(x)=3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)
b,Tính
+P(x)+Q(x)=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x+3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)
=(3x\(^4\)+3x\(^4\))+(x\(^3\)-4x\(^3\))+(x\(^2\)-x\(^2\))-\(\dfrac{1}{4}\)x-\(\dfrac{1}{4}\)
=6x\(^4\)-3x\(^3\)-\(\dfrac{1}{4}\)x-\(\dfrac{1}{4}\)
+P(x)-Q(x)=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x-(3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\))
=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x-3x\(^4\)+ 4x\(^3\)-x\(^2\)+\(\dfrac{1}{4}\)
=(3x\(^4\)-3x\(^{^{ }4}\))+(x\(^3\)+4x\(^3\))-(x\(^2\)+x\(^2\))-\(\dfrac{1}{4}\)x+\(\dfrac{1}{4}\)
=5x\(^3\)-4x\(^2\)-\(\dfrac{1}{4}\)x+\(\dfrac{1}{4}\)
c,
Ta có:P(0)=3.0\(^4\)+0\(^3\)-0\(^2\)-\(\dfrac{1}{4}\).0
=3.0+0-0-0
=0(thỏa mãn)
Lại có:Q(0)=3.0\(^4\)+0\(^2\)-4.0\(^3\)-\(\dfrac{1}{4}\)
=3.0+0-4.0-\(\dfrac{1}{4}\)
=0-\(\dfrac{1}{4}\)
=-\(\dfrac{1}{4}\)(vô lí)
Vậy x=0 là nghiệm của đa thức P(x) nhưng ko phải là nghiệm của đa thức Q(x)