a) Thu gọn và sắp xếp đa thức trên theo lũy thừa tăng dần của biến
* \(P\left(x\right)=3x^5-5x^5+x^4-2x-x^5+3x^4-x^2+x+1\)
\(P\left(x\right)=1+\left(-2x+x\right)+\left(-x^2\right)+\left(x^4+3x^4\right)+\left(3x^5-5x^5-x^5\right)\)
\(P\left(x\right)=1-x-x^2+4x^4-3x^5\)
* \(Q_x=-5+3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\)
\(Q\left(x\right)=-5+\left(-2x+2x\right)+3x^2+\left(-3x^3\right)+\left(-3x^4\right)+\left(3x^5-x^5\right)\)
\(Q\left(x\right)=-5+3x^2-3x^3-3x^4+2x^5\)
b)
* \(P\left(x\right)+Q\left(x\right)=\left(3x^5-5x^2+x^4-2x-x^5+3x^4-x^2+x+1\right)+\left(-5+3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\right)\)
\(P\left(x\right)+Q\left(x\right)=\left(1-x-x^2+4x^4-3x^5\right)+\left(-5+3x^2-3x^3-3x^4+2x^5\right)\)\(P\left(x\right)+Q\left(x\right)=\left(1+-5\right)+\left(-x^2+3x^2\right)+\left(4x^4-3x^4\right)+\left(-3x^5+2x^5\right)-x-3x^3\)
\(P\left(x\right)+Q\left(x\right)=-4-x+x^2-3x^3+x^4-x^5\)
* \(P\left(x\right)-Q\left(x\right)=\left(3x^5-5x^2+x^4-2x-x^5+3x^4-x^2+x+1\right)-\left(-5+3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\right)\)
\(P\left(x\right)-Q\left(x\right)=\left(1-x-x^2+4x^4-3x^5\right)-\left(-5+3x^2-3x^3-3x^4+2x^5\right)\)
\(P\left(x\right)-Q\left(x\right)=1-x-x^2+4x^4-3x^5+5-3x^2+3x^3+3x^4-2x^5\)
\(P\left(x\right)-Q\left(x\right)=\left(1+5\right)+\left(-x^2-3x^2\right)+\left(4x^4+3x^4\right)+\left(-3x^5-2x^5\right)-x+3x^3\)
\(P\left(x\right)-Q\left(x\right)=6-4x+7x^4-5x^5-x+3x^3\)