Cho 1/x + 1/y + 1/z = 3
và 1/x^2 + 1/y^2 + 1/z^2 = 1
CM: x+y+z = 4xyz
Cho x, Y, z khác 0 thỏa mãn (x-y-z) ^2=x^2+y^2+z^2 Cm 1/x^3 -1/y^3 -1/z^3=3/xyz
Cho: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\) và x+y+z=xyz (x, y, z khác 0). CM: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=2\)
Cho các số dương x, y, z thỏa mãn: 1/x+1/y+1/z=4. CM: 1/2x^2+y^2+z^2+1/x^2+2y^2+z^2+1/x^2+y^2+2z^2 bé hơn hoặc bằng 1
cho x+y+z =3 CMR 1/x^2+x +1/y^2+y +1/z^2+z >3/2
Cho các số x, y, z dương thỏa mãn: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3\)
Cmr: \(\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2y+z+x\right)^2}+\dfrac{1}{\left(2z+x+y\right)^2}\ge\dfrac{3}{16}\)
thực hiện phép tính
a, \(\frac{x^2-yz}{1+\frac{y+x}{x}}+\frac{y^2-xz}{1+\frac{z+x}{y}}+\frac{z^2-xy}{1+\frac{x+y}{z}}\)
b, \(\left(1+\frac{y^2+z^2-x^2}{2yz}\right).\frac{1+\frac{x}{y+z}}{1-\frac{x}{y+z}}.\frac{y^2+z^2-\left(y-z\right)^2}{x+y+z}\)
c,\(\frac{2}{3}\left[\frac{1}{1+\frac{\left(2x+1\right)^2}{3}}+\frac{1}{1+\frac{\left(2x-1\right)^2}{3}}\right]\)
Cho x + y + z = a ; x^2 + y^2 + z^2 = b^2 và 1/x+1/y+1/z= c. Tính giá trị của biểu thức x^3 + y^3 + z^3 theo a, b, c
cho 3 số x, y,z thỏa mãn: x+y+z=1
x2+y2+z2=1,
x3+y3+z3=1
tính P=(x-1)17+(y-1)9+(z-1)1997