cho x, y, z là các số dương thỏa mãn \(x\le1,y\le2\) và x + y + z = 6 chứng minh \(\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge4xyz\)
mau nha cần gấp
Cho x,y là các số thực thỏa mãn:\(\left\{{}\begin{matrix}0\le x\le y\le1\\2xy+y\le2\end{matrix}\right.\)
Chứng minh rằng: \(2x^2+y^2\le\frac{3}{2}\)
Bài 1: Giải phương trình: \(x^3+\dfrac{x^3}{\left(x-1\right)^3}+\dfrac{3x^2}{x-1}-2=0\)
Bài 2: Cho x, y, z là ba số thực tùy ý thỏa mãn: \(\left\{{}\begin{matrix}x+y+z=0\\-1\le x,y,z\le1\end{matrix}\right.\)
Chứng minh rằng: \(x^2+y^4+z^6\le2\)
Đẳng thức có thể xảy ra được không? Vì sao?
Bài 3: Tìm tất cả các số nguyên tố P có dạng: \(P=n^n+1\) , trong đó n là một số nguyên dương, biết rằng P không có nhiều hơn 19 chữ số.
Cho các số dương x,y,z chứng minh rằng: \(\left(1+\frac{x}{y}\right)^n+\left(1+\frac{y}{x}\right)^n\ge2^{n+1}\)
1/Cho x,y là các số thực dương thỏa mãn: x+y≤4. Tìm GTNN \(P=\dfrac{x^4}{\left(y-1\right)^3}+\dfrac{y^4}{\left(x-1\right)^3}\)
2/ Cho x,y,z nguyên thỏa mãn :x+y+z=2013.Chứng minh:
\(Q=\left(x^2+xy+yz\right)^3+\left(y^2+yz+xz\right)^3+\left(z^2+xz+xy\right)^3⋮3\)
Chứng minh:
\(\left(x^n+y^n\right)\left(x^m+y^m\right)\le2\left(x^{n+m}+y^{m+n}\right)\)
Cho \(x,y,z>2\) thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). Chứng minh rằng :
\(\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)
Cho a,b,c là các số dương thỏa mãn abc=1. Chứng minh rằng
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\le\frac{3}{4}\)
cho x,y,z là các số thực dương , thỏa mãn : xy+yz+zx=xyz
Chứng minh rằng \(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}+\dfrac{zx}{y^3\left(1+z\right)\left(1+x\right)}\ge\dfrac{1}{16}\)