Cho các số thực x, y thỏa mãn - 4 ≤ x ≤ 4; 0 ≤ y ≤ 16 . Chứng minh rằng:
\(x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\) ≤ 16
Cho x,y thỏa mãn x,y thuộc R và 0\(\le x,y\le\dfrac{1}{2}\) chứng minh rằng \(\dfrac{\sqrt{x}}{1+y}+\dfrac{\sqrt{y}}{1+x}\le\dfrac{2\sqrt{2}}{3}\)
Cho x,y > 0 và x2 + y2 = 2. Chứng minh rằng: \(\sqrt{1+2x}+\sqrt{1+2y}\) ≤ \(2\sqrt{3}\)
Tìm GTLN : / x -y/ + / x - z/ + / y - z/ với 0 ≤ x , y , z ≤ 3
Cho x, y, z\(\le\) 1. Chứng minh rằng:
x(1-y^3)/y^3+y(1-z^3)/z^3+z(1-x^3)/x^3 \(\ge\) 0
bài 1: Cho x,y,z dương thỏa mãn 0 ≤ x ≤ 4 ≤ y ≤ z ≤7 và x+y+z=15.Tìm GTLN của P=xyz
bài 2: CHo a,b là 2 số tự nhiên khác 0 và a+b=n.Tìm GTLN,GTNN của Q=ab
bài 3: Tìm x,y∈Z biết \(5x^2+2y^2+10x+4y=6\)
Help me! Các bạn giúp mk vs,mk cần gấp!
a) Cho y = (2x + 5)(5 – x) , \(-\frac{5}{2}\) ≤ x ≤ 5 . Tìm x để y đạt GTLN
b) Cho y = (6x + 3)(5 – 2x) , \(-\frac{1}{2}\)≤ x ≤ \(\frac{5}{2}\) . Tìm x để y đạt GTLN
tìm x
(x+4)(8-x)(3x-30)≤0
(2x-4)(15-3x)(4+x)>0
(15+3x)(6-x)(15+x)(x-6)≤0
Chứng minh các BĐT sau:
a) Cho 1 ≤ t ≤ 2. CMR :\(\frac{t^2}{2t^2+3}+\frac{2}{1+t}\)≤ \(\frac{34}{33}\)
b,Cho x , y > 0 thỏa mãn x + y = 1 . Chứng minh rằng: 3(3 x - 2)2 +\(\frac{8x}{y}\) ≥ 7
c) Chứng minh rằng với mọi số thực dương a, b ta luôn có: \(\frac{a^2b}{2a^3+b^3}+\frac{2}{3}\) ≥ \(\frac{a^2+2ab}{2a^2+b^2}\)
cho cặp số (x,y) thỏa mãn các điều kiện :
-1≤x+y≤1,-1≤xy+x+y ≤1
cmr : |x|≤2 , |y|≤2