Áp dụng AM - GM . Ta có :
\(2x\sqrt{9y\left(x+8y\right)}\le x\left(9y+x+8y\right)=x^2+17xy\)
\(\le x^2+\dfrac{17}{2}\left(x^2+y^2\right)\)
Tự làm tiếp
Áp dụng AM - GM . Ta có :
\(2x\sqrt{9y\left(x+8y\right)}\le x\left(9y+x+8y\right)=x^2+17xy\)
\(\le x^2+\dfrac{17}{2}\left(x^2+y^2\right)\)
Tự làm tiếp
Câu 1:Chứng minh với mọi \(x\ge0;x\ne4\)thì biểu thức Q=\(\frac{\sqrt{x}+2}{\sqrt{x+4}}\)không thể nhận giá trị nguyên
Câu 2:Giải các phương trình sau:
a)\(4x^2+11x+18=8\sqrt{\left(x+2\right)\left(x^2+2x+3\right)}\)
b)\(3x^2-11x-22=7\sqrt{\left(x+2\right)\left(x+5\right)\left(x-7\right)}\)
Câu 3:Giải các hệ phương trình:
a)\(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2\right)+y\left(x^2-5\right)=xy^2-5x\\4x\sqrt{y+3}+2\sqrt{2x-1}=4y^2+3x+3\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\sqrt{2x+1}.\left(2x+3\right)-2y=y^3\\\sqrt{2x+13}+5=3y+\sqrt{2x+6}\end{matrix}\right.\)
Câu 4:Giả sử (x;y) là các số thực thỏa mãn:
\(\left(x+\sqrt{3+x^2}\right).\left(y+\sqrt{3+y^2}\right)=9\)
Tìm giá trị nhỏ nhất của biểu thức \(P=x^2+xy+y^2\)
Cho biểu thức sau :
\(Y=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
a/ Rút gọn Y .
b/ Tìm giá trị nhỏ nhất của Y .
c/ Cho \(x\) lớn hơn hoặc bằng 0 . Chứng minh :
\(Y-\left|Y\right|=0\)
help me !!!!!!!!
Cho biểu thức :
\(Y=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
a) Rút gọn Y
b) Tìm giá trị nhỏ nhất của Y .
c) Cho x > = 4 . Chứng minh : \(Y-\left|Y\right|=0\)
Cho x,y là 2 số dương thay đổi.Tìm giá trị nhỏ nhất của biểu thức:
\(S=\dfrac{\left(x+y\right)^2}{x^2+y^2}+\dfrac{\left(x+y\right)^2}{xy}\)
Tìm x,y thỏa mãn \(\left\{{}\begin{matrix}\left(x+\sqrt{2015+x^2}\right)\left(y+\sqrt{2015+x^2}\right)=2015\\3x^2+8y^2-12xy=23\end{matrix}\right.\)
Cho biểu thức :
\(Y=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
a) Rút gọn Y .
b) Tìm giá trị nhỏ nhất của Y .
c) Cho x > = 4 . Chứng minh :
\(Y-\left|Y\right|=0\)
HELP ME !!!!!!!
Câu 2:Cho biểu thức P=\(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x-1}}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)(với x >0,x khác 1)
a)Rút gọn biểu thức P
b)Tính giá trị của biểu thức P khi 2\(\sqrt{x+1=5}\)
c)Tìm các giá trị của x để P >\(\dfrac{1}{2}\)
1) Rút gọn M = \(\left(\frac{x+\sqrt{y}+\sqrt{xy}-1}{\sqrt{x}+1}+1\right).\left(\sqrt{x}-\sqrt{y}\right)\) ( với x≥0 ; y≥0)
2) Cho pt : x2 - 2 (m -1)x + m - 5 = 0 ( với x là ẩn và m là tham số )
a) giải pt khi m = 2
b) chứng minh phương trình luôn có 2 nghiện phân biệt x1 , x2 với mọi giá trị của m . Tìm m để biểu thức P = x12 + x22 đạt giá trị nhỏ nhất
Cho các số thực x;y thỏa mãn:
\(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\)
Hãy tính giá trị của x+y