\(3x^2-7x+4=0\)
<=> \(3x^2-3x-4x+4\)
<=> \(3x\left(x-1\right)-4\left(x-1\right)\)
<=> \(\left(3x-4\right)\left(x-1\right)\)
TH1: \(3x-4=0\) \(=>\) \(x=\frac{4}{3}\)
TH2: \(x-1=0\) \(=>x=1\)
Vậy S
3x2-7x+4=0
<=>3x2-3x-4x+4=0
<=>3x(x-1)-4(x-1)=0
<=>(3x-4)(x-1)=0
<=>3x-4=0 hoặc x-1=0
*)3x-4=0 <=>3x=4 <=> x=4/3
*)x-1=0 <=> x=1
Vậy S={1;4/3}
Có : \(3x^2-7x+4=0\)
\(\Leftrightarrow\) \(3x^2-3x-4x+4=0\)
\(\Leftrightarrow\) \(3x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\) \(\left(x-1\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\) \(\left[\begin{matrix}x-1=0\\3x-4=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[\begin{matrix}x=1\\x=\frac{4}{3}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{1;\frac{4}{3}\right\}\)
k hiểu chỗ nào mk chỉ cho