Câu 2:
a: \(A=\sqrt{2x}+2\sqrt{2x}-3\sqrt{2}=3\sqrt{2x}-3\sqrt{2}\)
b: \(B=2\sqrt{x}+3\sqrt{x}-12\sqrt{x}=-7\sqrt{x}\)
Câu 2:
a: \(A=\sqrt{2x}+2\sqrt{2x}-3\sqrt{2}=3\sqrt{2x}-3\sqrt{2}\)
b: \(B=2\sqrt{x}+3\sqrt{x}-12\sqrt{x}=-7\sqrt{x}\)
Gọi x1,x2 là hai nghiệm của pt 2x2+2(m-1)x+m2+4m+3=0
Tìm giá trị lớn nhất của biểu thức A=/x1x2-2x1-2x2/
Câu 1
a) Tính \(2\sqrt{6}-\sqrt{49}\)
b) CMR \(\dfrac{1}{3+\sqrt{2}}+\dfrac{1}{3-\sqrt{2}}=\dfrac{6}{7}\)
c) Rút gọn biểu thức \(B=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)với...a\ge0;a\ne1\)
Câu 2Cho phương trình \(x^2-2\left(m-3\right)x-1=0\)
Tìm m để phương trình có nghiệm \(x_1;x_2\)mà biểu thức \(A=x^2_1-x_1x_2+x^2_2\)đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó
Cho biểu thức: \(P=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-1\)
a, Tìm điều kiện của x để biểu thức P có nghĩa và rút gọn biểu thức P
b, Tìm các giá trị nguyên của x để biểu thức \(Q=P-\sqrt{x}\) nhận giá trị nguyên
Cho pt: x2 - 2 ( m - 1)x+ m - 4 = 0
a) chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi giá trị của m
b) Gọi x1,x2 là 2 nghiệm của pt. Chứng minh biểu thức A=x1(1-x2)+x2(1-x1) không phụ thuộc vào m
Cho 2 số thực dương x,y thỏa mãn
\(x^3+y^3-3xy\left(x^2+y^2\right)+4x^2y^2\left(x+y\right)-4x^3y^3=0\)
Tìm giá trị nhỏ nhất của biểu thức M=x+y
Rút gọn biểu thức sau:
B = ( \(\dfrac{1}{x-4}\)- \(\dfrac{1}{x-4\sqrt{x}+4}\)) . \(\dfrac{x+2\sqrt{x}}{\sqrt{x}}\)
Câu 2: Cho x > 0, tìm GTNN của biểu thức E = \(\dfrac{x^3+2000}{x}\)
Giải phương trình
a,\(\sqrt{x^2-2x+1}=2x\)
b,\(\sqrt{25x-125}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=6\)
Bài 1: Cho a,b,c là các số thực dương.Tìm GTNN của biểu thức :
\(P=\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{b+a}+\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{b+a}{c}\)
Bài 2: Cho các số thực x,y thỏa mãn \(0\le x\le3\)và x+y=11. Tìm GTLN của P=xy
(chứng minh BĐT dựa vào BĐT Cauchy)