Với x, y là những số thực dương thỏa mãn xy(x+y) = 2, tìm giá trị nhỏ nhất của biểu thức M = x3(x+1) + y3(y+1)
Cho các số dương x, y thỏa mãn x2y + x + 1 \(\le\) y
Tìm giá trị lớn nhất của biểu thức: P = \(\dfrac{xy}{\left(x+y\right)^2}\)
Cho x, y thỏa mãn: \(\left\{{}\begin{matrix}6x^2-y^2+xy-6y-12x=0\\4x^2-xy+9=0\end{matrix}\right.\)
Tính A = \(\left(8-7x+2y\right)^{2012}\)
Cho 2 số dương x,y thỏa mãn x + y \(\ge\) 8. Tìm giá trị nhỏ nhất của biểu thức:
P=\(\dfrac{4x^2+6x+9}{2x}+\dfrac{17y^2+50}{10y}\)
cho x,y là số thực không âm
Tìm Max P = \(\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
1.Cho a, b, c đôi một khác nhau và khác 0 thỏa mãn
\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}=m\left(m>0\right).\)
Tính \(m\)
2. Cho x,y,z thỏa mãn x^3=3x-1;y^3=3y-1;z^3=3z-1
Tính A=x^2+y^2+z^2
3. Cho a+b+c=0 thỏa mãn \(\frac{x}{a}+\frac{y}{b}=\frac{x+y}{c}\). Chứng minh
\(xa^2+yb^2=\left(x+y\right).c^2\)
Chứng minh biểu thức:
\(A=\left(\left|\sqrt{xy}+\dfrac{x+y}{2}\right|-\left|x\right|\right)+\left(\left|\sqrt{xy}-\dfrac{x+y}{2}\right|-\left|y\right|\right)\) không phụ thuộc vào giá trị của biến
cho 2x\(^{^2}\)+\(2y^2-xy=1\)
tìm max min của P=\(7\left(x^2+y^2\right)+4x^2y^2\)
giải hệ phương trình sau: \(\left\{{}\begin{matrix}x^2-4xy+y^2=3\\y^2-3xy=2\end{matrix}\right.\)