Ta có : \(3x-1=2\left(x-1\right)\)
\(\Leftrightarrow3x-1=2x-2\)
\(\Leftrightarrow3x-2x=-2+1\)
\(\Leftrightarrow x=-1\)
Vậy : Ta chọn câu C. | x + 1 | = 0
Ta có : \(3x-1=2\left(x-1\right)\)
\(\Leftrightarrow3x-1=2x-2\)
\(\Leftrightarrow3x-2x=-2+1\)
\(\Leftrightarrow x=-1\)
Vậy : Ta chọn câu C. | x + 1 | = 0
Tìm m để 2 phương trình sau tương đương: PT(1): \(\left(x+3\right)^4+\left(x+5\right)^4=16\)
PT(2): \(x^2-\left(3-2m\right)x-6m=0\)
Bài 1: Giải phương trình
\(a,\dfrac{x+1}{2009}+\dfrac{x+3}{2007}=\dfrac{x+5}{2005}+\dfrac{x+7}{1993}\)
\(b,\left(x+2\right)^4+\left(x+4\right)^4=14\)
\(c,\left(x-3\right)\left(x-2\right)x+1=60\)
d, \(2x^4+3x^3-x^2+3x+2=0\)
Giải phương trình:
a) \(\frac{4x-8+\left(4-2x\right)}{x^2+1}=0\)
b) \(\frac{x^2\left(x-3\right)}{x}=0\)
c) \(\frac{\left(x+2\right)\left(2x-1\right)-x-2}{x^2-x+1}=0\)
Giải các phương trình sau
e) \(\frac{1}{2}\left(x+1\right)+\frac{1}{4}\left(x+3\right)=3-\frac{1}{3}\left(x+2\right)\)
f)(4-3x)(10x-5)=0
g) (x-3)(2x-1)=(2x-1)(2x+3)
h) 9 - x^2 = 0
Giải các phương trình và bất phương trình sau:
\(a,\frac{2-x}{2011}-1=\frac{1-x}{2012}-\frac{x}{2013}\)
\(b,4x^2-4x-5\left|2x-1\right|-5=0\)
\(c,\left(3x^2+3x+4\right)^2-\left(x^2+x+4\right)^2>0\)
Tìm x,biết:
a/\(x+5x^2=0\Leftrightarrow......\)
b/\(x+1=\left(x+1\right)^2\Leftrightarrow..........\)
c/\(x^3+x=0\Leftrightarrow.......\)
d/\(5x\left(x-2\right)-\left(2-x\right)=0\)
e/\(x\left(2x-1\right)+\frac{1}{3}-\frac{2}{3}x=0\Leftrightarrow........\)
g/\(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow.....\)
h/\(x^2-3x=0\Leftrightarrow.....\)
i/\(4x\left(x+1\right)=8\left(x+1\right)\Leftrightarrow.....\)
giải các phương trình sau :
a. (x-3)(x-4)-2.(3x-2)=\(\left(4-x\right)^2\)
b. \(\left(x+2\right)\left(x-2\right)+5x^2=\left(3x+1\right)-3x^2\)
c. \(\left(x+2\right)^3-\left(x-1\right)^3=\left(3x+1\right).\left(3x-1\right)\)
d.\(\frac{3-x}{2018}+\frac{x-1}{2020}=\frac{-x}{2021}+1\)
Giai phương trình:
a) \(x^4+x^2+6x-8=0\)
b) x\(^3+3x^2+4x+2=0\)
c) (x\(^2-9\))\(^2=12x+1\)
d) 2\(\left|x-3\right|+\left(5x-1\right)=0\)
e) \(\left|x-1\right|=\left|3x-5\right|\)
g) \(\left||x|-1\right|=x+1\)
Bài 1: Giải phương trình:
a, \(\frac{5x-1}{3}+\frac{7x-1,1}{3}-\frac{1,5-5x}{7}=\frac{9x-0,7}{4}\)
Bài 2: Giải các phương trình sau bằng cách đưa về phương trình tích:
a, \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)
b, \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
c, \(\left(x+7\right)\left(3x-1\right)=49-x^2\)
d, \(x^3-5x^2+6x=0\)
e, \(2x^3+3x^2-32x=48\)