a)Đặt \(T=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\) (*)
Từ \(abc=1\Rightarrow c=\frac{1}{ab}\).Thay vào (*) ta có:
\(T=\frac{1}{1+a+ab}+\frac{1}{1+b+\frac{1}{a}}+\frac{1}{1+\frac{1}{ab}+\frac{1}{b}}\)
\(=\frac{1}{1+a+ab}+\frac{1}{\frac{a+ab+1}{a}}+\frac{1}{\frac{ab+1+a}{ab}}\)
\(=\frac{1}{a+ab+1}+\frac{a}{a+ab+1}+\frac{ab}{a+ab+1}\)
\(=\frac{a+ab+1}{a+ab+1}=1=VP\) (Đpcm)
b)Áp dụng Bđt Cô-si ta có:
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=\frac{2a}{c}\)
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\sqrt{\frac{b^2}{c^2}\cdot\frac{c^2}{a^2}}=\frac{2b}{a}\)
\(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{c^2}{a^2}}=\frac{2c}{b}\)
Cộng theo vế ta có:
\(\frac{2a^2}{b^2}+\frac{2b^2}{c^2}+\frac{2c^2}{a^2}\ge\frac{2a}{c}+\frac{2b}{a}+\frac{2c}{b}\)
\(\Leftrightarrow2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\) (Đpcm)
Dấu = khi a=b=c