\(P=\frac{16}{x}+\frac{\frac{1}{4}}{y}\ge\frac{\left(4+\frac{1}{2}\right)^2}{x+y}=\frac{81}{20}\)
\(\Rightarrow a+b=81+20=101\)
\(P=\frac{16}{x}+\frac{\frac{1}{4}}{y}\ge\frac{\left(4+\frac{1}{2}\right)^2}{x+y}=\frac{81}{20}\)
\(\Rightarrow a+b=81+20=101\)
Cho x, y, z là ba số dương thỏa mãn \(x^2+y^2+z^2=1\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2xyz\)
Câu 12 : Tìm GTNN của biểu thức A = \(\sqrt{2x+5}+\sqrt{4-3x}v\text{ới }x\in[\frac{-5}{2};\frac{4}{3}]\)là \(\sqrt{\frac{a}{b}}\) với \(\frac{a}{b}\) là phân số dương tối giản . Tính S = a+b ?
Cho 2 số thực dương x,y thoả mãn x+y = 1 . GTNN của S = \(\frac{4}{x}+\frac{9}{y}\)là
Cho x, y, z là các số thực thuộc (0;1) thỏa mãn điều kiện \(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+3xy-\left(x^2+y^2\right)\)
Xét các số thực dương x,y,z thỏa mãn điều kiện \(2\left(x+y\right)+7z=xyz\). Tìm giá trị nhỏ nhất của biểu thức \(S=2x+y+2z\)
Cho a, b, c là các số thực dương thỏa mãn \(4\left(a^3+b^3\right)+c^3=2\left(a+b+c\right)\left(ac+bc-2\right)\)
Tìm giá trị lớn nhất của \(P=\frac{2a^2}{3a^2+b^2+2ac\left(c+2\right)}+\frac{b+c}{a+b+c+2}-\frac{\left(a+b\right)^2+c^2}{16}\)
cho x,y,z là các số dương thỏa mãn: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
CMR: \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\)
Cho a, b thỏa mãn a+b=5. Biết giá trị lớn nhất của \(P=ab^2\) là x/y (với x, y là phân số tối giản, mẫu dương). Khi đó x+y=...
Câu 1: Cho tam giác ABC cân tại A nội tiếp đường tròn (O;R), AB=x. Tìm giá trị của x để diện tích tam giác ABC lớn nhất.
Câu 2: Cho x, y là các số thực không âm thỏa mãn x+y=2. Tìm giá trị nhỏ nhất của biểu thức S=x2y2-4xy.
Câu 3: Cho 2 số dương a, b thỏa mãn: a+b=1. Tìm giá trị lớn nhất của biểu thức P=2ab-2a-b-2.