Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Phạm Thanh Trà

Xét các số thực dương x,y,z thỏa mãn điều kiện \(2\left(x+y\right)+7z=xyz\). Tìm giá trị nhỏ nhất của biểu thức \(S=2x+y+2z\)

Bùi Bích Phương
7 tháng 4 2016 lúc 11:43

Ta có \(2\left(x+y\right)=z\left(xy-7\right)\), do x,y,z là các số dương  nên xy-7>0.

Khi đó, từ giả thiết ta được : \(z=\frac{2\left(x+y\right)}{xy-7}\)

Suy ra \(S=f\left(x;y\right)=2x+y+\frac{4\left(x+y\right)}{xy-7}\) với điều kiện \(x>0;y>0,xy>7\) (*)

Với mỗi x cố định, xét đạo hàm của hàm số \(f\left(x;y\right)\) theo ẩn y ta được :

\(f'_y\left(x;y\right)=1+\frac{4\left(xy-7\right)-4x\left(x+y\right)}{\left(xy-7\right)^2}=1-\frac{28+4x^2}{\left(xy-7\right)^2}\)

\(f'_y\left(x;y\right)=0\Leftrightarrow x^2y^2-14xy+21-4x^2=0\)

             \(\Leftrightarrow y_0=\frac{7}{x}+2\sqrt{1+\frac{7}{x^2}}\)

Suy ra \(f\left(x;y_0\right)=2x+\frac{11}{x}+4\sqrt{1+\frac{7}{x^2}}\)

Xét hàm số : \(g\left(x\right)=2x+\frac{11}{x}+4\sqrt{1+\frac{7}{x^2}}\) với x>0, với \(g'\left(x\right)=2-\frac{11}{x^2}-\frac{28}{x^3\sqrt{1+\frac{7}{x^2}}}\)

\(g'\left(x\right)=0\Leftrightarrow x=3\)

Khi đó \(g\left(x\right)\ge g\left(3\right)\Leftrightarrow g\left(x\right)\ge15\)

Với điều kiện (*), ta có \(S\ge f\left(x;y_0\right)=g\left(x\right)\ge15\)

Vậy MinS=15 khi x=3, y=5, z=2

Bình luận (0)

Các câu hỏi tương tự
Nguyễn Thành Trung
Xem chi tiết
Guyo
Xem chi tiết
Nguyễn Hồ Thúy Anh
Xem chi tiết
Rosie
Xem chi tiết
Way To Heaven
Xem chi tiết
Tâm Cao
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
hoàng quốc sơn
Xem chi tiết
Bui Bao Anh
Xem chi tiết