Câu 1 : Cho hàm số y = \(mx^4-x^2+1\) . Tập hợp các số thực m để hàm số đã cho có đúng một điểm cực trị là
A. \(\left(0;+\infty\right)\) B. \((-\infty;0]\) C. \([0;+\infty)\) D. \(\left(-\infty;0\right)\)
Câu 2 : Tập hợp tất cả các giá trị tham số thực m để đồ thị hàm số \(y=x^3+3mx^2+3\left(m^2-1\right)x+m^3\) có hai điểm cực trị nằm về hai phía trục hoành là (a;b) . Khi đó giá trị a + 2b bằng
A. \(\frac{3}{2}\) B. \(\frac{4}{3}\) C. 1 D. \(\frac{2}{3}\)
Câu 3 : Có bao nhiêu giá trị nguyên dương của m để khoảng cách từ gốc tọa độ O đến đường thẳng đi qua 2 điểm cực trị của đồ thị hàm số y = \(x^3-3x+m\) nhỏ hơn hoặc bằng \(\sqrt{5}\)
A. 5 B. 2 C. 11 D. 4
Câu 4 : Gọi m là giá trị nhỏ nhất của hàm số y = \(x-1+\frac{4}{x-1}\) trên khoảng \(\left(1;+\infty\right)\) . Tìm m ?
A. m = 2 B. m = 5 C. m = 3 D. m = 4
Câu 5 : giá trị lớn nhất của hàm số \(y=\sqrt{-x^2+4x}\) trên khoảng (0;3) là :
A. 4 B. 2 C. 0 D. -2
Câu 6 : giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\sqrt{x-2}+\sqrt{4-x}\) lần lượt là M và m . Chọn câu trả lời đúng
A. M = 4 , m = 2 B. M = 2 , m = 0 C. M = 3 , m = 2 D. M = 2 , m = \(\sqrt{2}\)
1.
Hàm trùng phương có đúng 1 cực trị khi:
TH1: \(a=m=0\)
TH2: \(ab=-m>0\Leftrightarrow m< 0\)
\(\Rightarrow m\le0\)
Đáp án B
2.
\(y'=3\left(x^2+2mx+m^2-1\right)=3\left(x+m+1\right)\left(x+m-1\right)\)
\(y'=0\Rightarrow\left[{}\begin{matrix}x=-m+1\\x=-m-1\end{matrix}\right.\)
Hàm số có 2 cực trị nằm về 2 phía trục hoành
\(\Leftrightarrow y'\left(-m+1\right).y'\left(-m-1\right)< 0\)
\(\Leftrightarrow\left(3m-2\right)\left(3m+2\right)< 0\Rightarrow-\frac{2}{3}< m< \frac{2}{3}\)
\(\Rightarrow a+2b=-\frac{2}{3}+2.\frac{2}{3}=\frac{2}{3}\)
3.
\(y'=3x^2-3\)
Tiến hành chia y cho y' và lấy phần dư ta được pt đường thẳng đi qua 2 cực trị có dạng: \(y=-2x+m\)
Hay \(2x+y-m=0\)
\(d\left(O;d\right)=\frac{\left|-m\right|}{\sqrt{2^2+1^2}}=\frac{\left|m\right|}{\sqrt{5}}\le\sqrt{5}\)
\(\Rightarrow-5\le m\le5\)
Có 5 giá trị nguyên dương của m
4.
\(y'=1-\frac{4}{\left(x-1\right)^2}=0\Rightarrow x=3\)
\(y\left(3\right)=4\Rightarrow m=4\)
5.
\(y'=\frac{-x+2}{\sqrt{-x^2+4x}}=0\Rightarrow x=2\)
\(y\left(2\right)=2\)
Đáp án B
6. ĐKXĐ: \(x\in\left[2;4\right]\)
\(y'=\frac{1}{2\sqrt{x-2}}-\frac{1}{2\sqrt{4-x}}=0\Rightarrow x=3\)
\(y\left(2\right)=\sqrt{2}\) ; \(y\left(4\right)=\sqrt{2}\) ; \(y\left(3\right)=2\)
\(\Rightarrow M=2;m=\sqrt{2}\)