Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Ngọc Thảo

Các bạn giải gấp cho mk câu này nha . Mk đang cần rất gấp bạn nào giải đúng mk tick cho

Giải phương trình

\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)

B.Thị Anh Thơ
12 tháng 9 2019 lúc 18:01
Lê Thị Thục Hiền
12 tháng 9 2019 lúc 20:54

\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\) (*) (đk : \(x\ge\frac{5}{2}\))

Đặt \(\sqrt{2x-5}=a\left(a\ge0\right)\)

=> 2x-5=a2

<=> \(x=\frac{a^2+5}{2}\)

\(\sqrt{\frac{a^2+5}{2}-2+a}+\sqrt{\frac{a^2+5}{2}+2+3a}=7\sqrt{2}\)

<=> \(\sqrt{\frac{a^2+5-4+2a}{2}}+\sqrt{\frac{a^2+5+4+6a}{2}}=7\sqrt{2}\)

<=>\(\sqrt{\frac{a^2+2a+1}{2}}+\sqrt{\frac{a^2+6a+9}{2}}=7\sqrt{2}\)

<=> \(\frac{\sqrt{\left(a+1\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(a+3\right)^2}}{\sqrt{2}}=7\sqrt{2}\)

<=> \(\left|a+1\right|+\left|a+3\right|=7\sqrt{2}.\sqrt{2}\)

<=> \(a+1+a+3=14\)(do a\(\ge\)0)

<=> \(2a=10\) <=> a=5(t/m)

<=> \(\sqrt{2x-5}=5\)

<=> \(2x-5=25\) <=> \(x=15\)(tm pt (*))

Vậy pt (*) có tập nghiệm \(S=\left\{15\right\}\)

Chi
12 tháng 9 2019 lúc 21:47

Căn bậc hai. Căn bậc ba


Các câu hỏi tương tự
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết