ĐKXĐ : \(\left\{{}\begin{matrix}x+4\ge0\\1-x\ge0\\1-2x\ge0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge-4\\x\le1\\x\le0,5\end{matrix}\right.\)
=> \(-4\le x\le0,5\)
Ta có : \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
<=> \(\left(\sqrt{x+4}-\sqrt{1-x}\right)^2=\left(\sqrt{1-2x}\right)^2\)
<=> \(\left(x+4\right)-2\sqrt{\left(x+4\right)\left(1-x\right)}+\left(1-x\right)=1-2x\)
<=> \(x+4-2\sqrt{\left(x+4\right)\left(1-x\right)}+1-x=1-2x\)
<=> \(-2\sqrt{\left(x+4\right)\left(1-x\right)}=1-2x-4-x-1+x\)
<=> \(-2\sqrt{\left(x+4\right)\left(1-x\right)}=-2x-4\)
<=> \(\sqrt{\left(x+4\right)\left(1-x\right)}=x+2\)
ĐKXĐ : \(x+2\ge0\)
\(x\ge-2\)
=> ĐKXĐ là : \(-2\le x\le0,5\)
<=> \(\left(x+4\right)\left(1-x\right)=\left(x+2\right)^2\)
<=> \(x+4-x^2-4x=x^2+4x+4\)
<=> \(x+4-x^2-4x-x^2-4x-4=0\)
<=> \(-7x-2x^2=0\)
<=> \(x\left(7+2x\right)=0\)
<=> \(\left\{{}\begin{matrix}x=0\\7+2x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\left(TM\right)\\x=-\frac{7}{2}\left(L\right)\end{matrix}\right.\)
Vậy phương trình trên có nghiệm là x = 0 .
\(ĐK:\left\{{}\begin{matrix}x+4\ge0\\1-x\ge0\\1-2x\ge0\end{matrix}\right.\Leftrightarrow-4\le x\le\frac{1}{2}\)
Phương trình đc viết dưới dạng:
\(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\Leftrightarrow\sqrt{\left(x+4\right)\left(1-x\right)}=2+x\\ \Leftrightarrow2+x\ge0\\ \left(x+4\right)\left(1-x\right)=\left(2+x\right)^2\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\2x^2+5x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x=0\\x=-\frac{5}{2}\end{matrix}\right.\Leftrightarrow x=0\)
Vậy phương trình có nghiệm \(x=0\)