Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hà My

Biết biểu thức 

 \(P=\sqrt{\dfrac{1}{4}+\dfrac{1}{1^2}+\dfrac{1}{3^2}}+\sqrt{\dfrac{1}{4}+\dfrac{1}{3^2}+\dfrac{1}{5^2}}+...+\sqrt{\dfrac{1}{4}+\dfrac{1}{399^2}+\dfrac{1}{401^2}}=\dfrac{a}{b};\)

 

, với a và b là các số nguyên dương, a/ b là phân số tối giản. Khi đó giá trị của biểu thức

Q= a  −100b bằng

A. 400 .                          B. 401.                           C. 403.                   D. 402 .

Nguyễn Việt Lâm
8 tháng 3 2022 lúc 18:46

\(\sqrt{\dfrac{1}{4}+\dfrac{1}{\left(2n-1\right)^2}+\dfrac{1}{\left(2n+1\right)^2}}=\sqrt{\dfrac{\left(2n-1\right)^2\left(2n+1\right)^2+4\left(2n-1\right)^2+4\left(2n+1\right)^2}{4\left(2n-1\right)^2\left(2n+1\right)^2}}\)

\(=\sqrt{\dfrac{\left(4n^2-1\right)^2+4\left(4n^2-4n+1\right)+4\left(4n^2+4n+1\right)}{4\left(2n-1\right)^2\left(2n+1\right)^2}}\)

\(=\sqrt{\dfrac{16n^4+24n^2+9}{4\left(2n-1\right)^2\left(2n+1\right)^2}}=\sqrt{\dfrac{\left(4n^2+3\right)^2}{4\left(2n-1\right)^2\left(2n+1\right)^2}}=\dfrac{4n^2+3}{2\left(2n-1\right)\left(2n+1\right)}\)

\(=\dfrac{\left(4n^2-1\right)+4}{2\left(2n-1\right)\left(2n+1\right)}=\dfrac{1}{2}+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)

\(=\dfrac{1}{2}+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)

Do đó:

\(P=\left(\dfrac{1}{2}+\dfrac{1}{1}-\dfrac{1}{3}\right)+\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}\right)+...+\left(\dfrac{1}{2}-\dfrac{1}{399}-\dfrac{1}{401}\right)\)

\(=\dfrac{1}{2}.200+1-\dfrac{1}{401}=\dfrac{40500}{401}\)

\(\Rightarrow Q=400\)


Các câu hỏi tương tự
Anh Quynh
Xem chi tiết
Ngoc Anh Thai
Xem chi tiết
Ngoc Anh Thai
Xem chi tiết
Vangull
Xem chi tiết
Ngoc Anh Thai
Xem chi tiết
Ngoc Anh Thai
Xem chi tiết
Thiếu Gia Họ Nguyễn
Xem chi tiết
Ctuu
Xem chi tiết
VUX NA
Xem chi tiết