x,y đồng thời bằng 0 :v.
Ta có:
\(\dfrac{B}{A}=\dfrac{\left(7x\right)^2+\left(-7y\right)^2}{x^2+y^2}=\dfrac{49x^2+49y^2}{x^2+y^2}=49\)
x,y đồng thời bằng 0 :v.
Ta có:
\(\dfrac{B}{A}=\dfrac{\left(7x\right)^2+\left(-7y\right)^2}{x^2+y^2}=\dfrac{49x^2+49y^2}{x^2+y^2}=49\)
Bài 1 : NĂNG KHIẾU 2016-2017
A) Tính S=a+b biết a;b>0, a \(\ne\)b và \(\left(\dfrac{a\left(a-4b\right)+b\left(b+2a\right)}{a+b}\right):\left[\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\right]=2016\)
B) Giải: \(x\sqrt{x+5}=2x^2-5x\left(1\right)và\left\{{}\begin{matrix}\left(\sqrt{y}+x-3\right)\left(y+\sqrt{x}\right)=0\\x^2+y=5\end{matrix}\right.\)
Với a,b,c≥0 và x,y,z>0. Chứng minh \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)
cho các số x,y,z thoả mãn \(\dfrac{x}{y-z}+\dfrac{y}{z-x}+\dfrac{z}{x-y}=0\)
tính giá trị biểu thức A=\(\dfrac{x}{\left(y-z\right)^2}+\dfrac{y}{\left(z-x\right)^2}+\dfrac{z}{\left(x-y\right)^2}\)
Giả thiết x, y, z > 0 và xy + y2 + zx = a. Chứng minh rằng :
\(x\sqrt{\dfrac{\left(a+y^2\right)\left(a+z^2\right)}{a+x^2}}+y\sqrt{\dfrac{\left(a+z^2\right)\left(a+x^2\right)}{a+y^2}}+z\sqrt{\dfrac{\left(a+x^2\right)\left(a+y^2\right)}{a+z^2}}=2a\)
Biết A=x2+y2 ; B=(7x)2+(-7y)2 và x ,ykhông đồng thời bằng 0 .Tính tỉ số B/A
1. Cho 3 số dương \(x,y,z\) thoả mãn điều kiện \(xy+yz+zy=1\) . Tính:
\(A=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
2. Tìm Min của biểu thức:
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
3. Cho biểu thức:
\(A=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right).\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) với \(x>0;y>0\)
a, Rút gọn A.
b, Biết \(xy=16\) . Tìm các giá trị của x,y để A có giá trị nhỏ nhất. Tìm giá trị đó
Bài 1: Rút gọn: A= \(\left(\dfrac{x}{x^2-49}-\dfrac{x-7}{x^2+7x}\right):\dfrac{2x-7}{x^2+7x}+\dfrac{x}{7-x}\)
Bài 2: Rút gọn: B=\(\left[\dfrac{3}{x+1}+\left(\dfrac{3}{x}-\dfrac{x}{x^2+2x+1}\right):\dfrac{2x^2+3x}{x+1}\right]:\dfrac{1+3x}{x^2+x}\)
Bài 3: Rút gọn D=\(\left(\sqrt{a}+\dfrac{b-\sqrt{ab}}{\sqrt{a}+b}\right):\left(\dfrac{a}{\sqrt{ab}+b}+\dfrac{b}{\sqrt{ab}-a}-\dfrac{a+b}{\sqrt{ab}}\right)\)
Tìm \(x;y\in N\)tmãn : \(\sqrt{x}+\sqrt{y}=\sqrt{2012}\)
2, Rút gọn bt
\(P=\dfrac{x}{x-\sqrt{x}}+\dfrac{2}{x+2\sqrt{x}}+\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}\)
b, gpt : \(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)
3, cho x>1 ; y>0 , cm
\(\dfrac{1}{\left(x+1\right)^3}+\left(\dfrac{x-1}{y}\right)^3+\dfrac{1}{y^3}\ge3\left(\dfrac{3-2x}{x-1}+\dfrac{x}{y}\right)\)
Rút gọn: P=\(\dfrac{xy-\sqrt{x^2-1}.\sqrt{y^2-1}}{xy+\sqrt{x^2-1}.\sqrt{y^2-1}}\) trong đó \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(a+\dfrac{1}{a}\right)\\y=\dfrac{1}{2}\left(b+\dfrac{1}{b}\right)\end{matrix}\right.\).