Chương I - Căn bậc hai. Căn bậc ba

Hạ Băng

Với a,b,c≥0 và x,y,z>0. Chứng minh \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

Lê Thị Thục Hiền
4 tháng 6 2021 lúc 21:41

Áp dụng bđt bunhiacopxki có:

\(\left(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\right)\left(x+y+z\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

Dấu "=" xảy ra <=> \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

Bình luận (0)
An Thy
5 tháng 6 2021 lúc 12:14

BĐT này gọi là BĐT Cauchy-Schwarz đó bạn.

Chứng minh BĐT: \(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\)

\(\Rightarrow\dfrac{a^2y+b^2x}{xy}\ge\dfrac{\left(a+b\right)^2}{x+y}\Rightarrow\left(a^2y+b^2x\right)\left(x+y\right)\ge\left(a+b\right)^2.xy\)

\(\Leftrightarrow a^2y^2+b^2x^2-2abxy\ge0\Leftrightarrow\left(ay-by\right)^2\ge0\) (luôn đúng)

Áp dụng BĐT trên vào đề:

Ta được: \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b\right)^2}{x+y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

 

Bình luận (0)

Các câu hỏi tương tự
Karry Angel
Xem chi tiết
Hùng Mạnh
Xem chi tiết
Karry Angel
Xem chi tiết
Nguyễn Hồng Pha
Xem chi tiết
Ex Crush
Xem chi tiết
Fidget Spinner
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Trần Minh Tâm
Xem chi tiết