Bài 1: Rút gọn: A= \(\left(\dfrac{x}{x^2-49}-\dfrac{x-7}{x^2+7x}\right):\dfrac{2x-7}{x^2+7x}+\dfrac{x}{7-x}\)
Bài 2: Rút gọn: B=\(\left[\dfrac{3}{x+1}+\left(\dfrac{3}{x}-\dfrac{x}{x^2+2x+1}\right):\dfrac{2x^2+3x}{x+1}\right]:\dfrac{1+3x}{x^2+x}\)
Bài 3: Rút gọn D=\(\left(\sqrt{a}+\dfrac{b-\sqrt{ab}}{\sqrt{a}+b}\right):\left(\dfrac{a}{\sqrt{ab}+b}+\dfrac{b}{\sqrt{ab}-a}-\dfrac{a+b}{\sqrt{ab}}\right)\)
Bài 1:
\(\left(\dfrac{x}{x^2-49}-\dfrac{x-7}{x^2+7x}\right):\dfrac{2x-7}{x^2+7x}+\dfrac{x}{7-x}\)
\(=\left(\dfrac{x}{\left(x-7\right)\left(x+7\right)}-\dfrac{x-7}{x\cdot\left(x+7\right)}\right)\cdot\dfrac{x^2+7x}{2x-7}+\dfrac{x}{-\left(x-7\right)}\)
\(=\dfrac{x^2-\left(x-7\right)^2}{x\cdot\left(x-7\right)\left(x+7\right)}\cdot\dfrac{x\cdot\left(x+7\right)}{2x-7}-\dfrac{x}{x-7}\)
\(=\dfrac{\left(x-\left(x-7\right)\right)\cdot\left(x+x-7\right)}{x-7}\cdot\dfrac{1}{2x-7}-\dfrac{x}{x-7}\)
\(=\dfrac{\left(x-x+7\right)\cdot\left(2x-7\right)}{x-7}\cdot\dfrac{1}{2x-7}-\dfrac{x}{x-7}\)
\(=\dfrac{7}{x-7}-\dfrac{x}{x-7}\)
\(=\dfrac{7-x}{x-7}\)
\(=\dfrac{-\left(x-7\right)}{x-7}\)
\(=-1\)
A = \(\left(\dfrac{x}{x^2-49}-\dfrac{x-7}{x^2+7x}\right):\dfrac{2x-7}{x^2+7x}+\dfrac{x}{7-x}\)
A = \(\left(\dfrac{x}{\left(x+7\right)\left(x-7\right)}-\dfrac{x-7}{x\left(x+7\right)}\right):\dfrac{2x-7}{x\left(x+7\right)}+\dfrac{x}{7-x}\)
A = \(\left(\dfrac{x^2-\left(x-7\right)^2}{\left(x+7\right)\left(x-7\right)x}\right):\dfrac{2x-7}{x\left(x+7\right)}-\dfrac{x}{x-7}\)
A = \(\left(\dfrac{x^2-\left(x^2-14x+49\right)}{\left(x+7\right)\left(x-7\right)x}\right):\dfrac{\left(2x-7\right)\left(x-7\right)-\left(x^3+7x^2\right)}{\left(x+7\right)\left(x-7\right)x}\)
A = \(\dfrac{14x-49}{\left(x+7\right)\left(x-7\right)x}:\dfrac{-x^3-5x^2-21x+49}{\left(x+7\right)\left(x-7\right)x}\)
A = \(\dfrac{14x-49}{\left(x+7\right)\left(x-7\right)x}.\dfrac{\left(x+7\right)\left(x-7\right)x}{-x^3-5x^2-21x+49}\)
A = \(\dfrac{14x-49}{-x^3-5x^2-21x+49}\)
Bài 2:
\(B=\left[\dfrac{3}{x+1}+\left(\dfrac{3}{x}-\dfrac{x}{x^2+2x+1}\right):\dfrac{2x^2+3x}{x+1}\right]:\dfrac{1+3x}{x^2+x}\)
\(=\left(\dfrac{3}{x+1}+\dfrac{3\left(x^2+2x+1\right)-x^2}{x\cdot\left(x^2+2x+1\right)}\cdot\dfrac{x+1}{2x^2+3x}\right)\cdot\dfrac{x^2+x}{1+3x}\)
\(=\left(\dfrac{3}{x+1}+\dfrac{3x^2+6x+3-x^2}{x\left(x+1\right)^2}\cdot\dfrac{x+1}{2x^2+3x}\right)\cdot\dfrac{x\left(x+1\right)}{1+3x}\)
\(=\left(\dfrac{3}{x+1}+\dfrac{2x^2+6x+3}{x\left(x+1\right)}\cdot\dfrac{1}{2x^2+3x}\right)\cdot\dfrac{x\left(x+1\right)}{1+3x}\)
\(=\left(\dfrac{3}{x+1}+\dfrac{2x^2+6x+3}{x\left(x+1\right)\left(2x^2+3x\right)}\right)\cdot\dfrac{x\left(x+1\right)}{1+3x}\)
\(=\dfrac{3x\cdot\left(2x^2+3x\right)+2x^2+6x+3}{x\left(x+1\right)\left(2x^2+3x\right)}\cdot\dfrac{x\left(x+1\right)}{1+3x}\)
\(=\dfrac{6x^3+9x^2+2x^2+6x+3}{2x^2+3x}\cdot\dfrac{1}{1+3x}\)
\(=\dfrac{6x^3+11x^2+6x+3}{2x^2+3x}\cdot\dfrac{1}{1+3x}\)
\(=\dfrac{6x^3+11x^2+6x+3}{\left(2x^2+3x\right)\left(1+3x\right)}\)
\(=\dfrac{6x^3+11x^2+6x+3}{2x^2+6x^3+3x+9x^2}\)
\(=\dfrac{6x^3+11x^2+6x+3}{11x^2+6x^3+3x}\)