có bao nhiêu giá trị nguyên của tham số m để phương trình \(\left(m-1\right)^2x-3=4x-m\) có nghiệm dương
sử dụng đồ thị biện luận số nghiệm theo pt
\(\left|x^2-4x\right|=\left|m^2-4m\right|\)
có bao nhiêu số nguyên của tham số m để phương trình \(\sqrt{x+3}+\sqrt{6-x}-\sqrt{\left(x+3\right)\left(6-x\right)}=m\) có nghiệm
Biện luận theo m số nghiệm của phương trình ( dựa vào đồ thị hàm số):
\(\left|-x^2+3x+2\right|=2m-1\)
Bài 1.Cho hàm số
1.Lập bảng biến thiên và vẽ đồ thị
2.Biện luận số nghiệm của phương trình -x^2 - 2x= 3m bằng cách sử dụng đồ thị (P)
3.Tìm m để phương trình |-x^2-2x+1| có 4 nghiệm phân biệt bằng cách sử dụng đồ thị.
Có bao nhiều giá trị nguyên của m đẻ phương trình \(\left(x^2-4x\right)^2-3\left(2-x\right)^2+m=0\) có 4 nghiệm phân biệt
Tập hợp các giá trị tham số m để phương trình \(x^3+ \left(2m+5\right)x^2+2\left(m+3\right)x-4m-12=0\)
có ba nghiệm phân biệt lớn hơn -1 là (a;b)/ {c}. Tính T = 2a - 3b + 6c
(P): y= (1 - m)x2 - mx - 3
a) tìm m để hàm số đạt GTLN
b) Vẽ (P) ứng mới m= -1
c) Dùng đồ thị để biện luận theo k số nghiệm của phương trình : x2 - 1/2x -k = 0
d) Dùng đồ thị để biện luận theo k số nghiệm của phương trình : | 2x2 + x - 3 | = k
cho biết tập hợp các giá trị của tham số để phương trình \(2\left(x^2+\dfrac{1}{x^2}\right)-3\left(x+\dfrac{1}{x}\right)-2m-1=0\)
có nghiệm là S = \(\left[\dfrac{-b}{a};+\infty\right]\)
với a, b là các số nguyên dương a/b là phân số tối giản. Tính a + b