Cho hàm số: \(y=x^2-3x-4\) có đồ thị là (P).
a) Lập bảng biến thiên và vẽ (P).
b) Tìm m để phương trình \(\left|x^2-3x-4\right|=2m-1\) có bốn nghiệm phân biệt.
c) Tìm m để phương trình \(x^2-3\left|x\right|-4=m\) có 3 nghiệm.
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
a, Lập bảng biến thiên, vẽ đồ thị (P) của hàm số : y = - x^2 + 4x - 3
b, Dựa vào đồ thị, hãy:
+ Tìm x để y > 0 ; y < 0;
+ Tìm max, min của hàm số trên đoạn [0;4].
+ Biện luận theo m số nghiệm của pt x^2 - 4x = m
+Tìm k để pt -x^2 + 4x = k có nghiệm thỏa mãn [-1;3]
1. Cho hàm số \(y=x^2-5x+4\)
a) Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số đã cho.
b) Tìm m để phương trình \(\left|x^2-5x+4\right|-2=m\) có bốn nghiệm phân biệt.
c) Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(f\left(x\right)=\left|x^2-5x+4\right|\) với x ∈ [0;5]
2. Cho hàm số \(y=-2x^2+4x\)
a) Vẽ đồ thị (P) của hàm số đã cho.
b) Tìm m để phương trình \(\left|x^2-2x\right|=m\) có ba nghiệm phân biệt.
a) lập bảng biến thiên và vẽ đồ thị hàm số y = x\(^2\)+3x+2
b) tìm m để đường thẳng y = -x+m cắt (P) tại 2 điểm phân biệt có hoành độ dương
c) tìm m để đường thẳng y = -2x+3m cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn x\(_1\)= 3x\(_2\)
(P): y= (1 - m)x2 - mx - 3
a) tìm m để hàm số đạt GTLN
b) Vẽ (P) ứng mới m= -1
c) Dùng đồ thị để biện luận theo k số nghiệm của phương trình : x2 - 1/2x -k = 0
d) Dùng đồ thị để biện luận theo k số nghiệm của phương trình : | 2x2 + x - 3 | = k
Cho hàm số: y=-3x2 + 2x+1(P)
a,Lập bảng biến thiên và vẽ đồ thị (P) của hàm số đã cho
b,Từ đồ thị (P), tìm x để: \(y\ge0;y< 0;y\le-4\)
c,Dùng đồ thị (P)biện luận theo m số nghiệm phương trình: -3x2 + 2x =m
d,Tìm GTLN,GTNN của hàm số tren R?Trên[2;7]?
y=-x^2+2x+3 có đồ thị là (p)
a)lập bảng biến thiên và vẽ đồ thị (p)của hàm số đã cho
b)tìm tọa độ các giao điểm của đồ thị (p) với đường thẳng y=4x-5
Cho hàm số \(y=-2x^2+\left(m-3\right)x+5-m\)
a) Lập bảng biến thiên và vẽ đồ thị hàm số với m=0
b) Dựa vào đồ thị, Tìm a để phương trình \(2x^2+3x+a=0\) có 2 nghiệm phân biệt
c) Dựa vào đồ thị, vẽ đồ thị hàm số \(y=\left|2x^2+3x-5\right|\)
d) Vẽ đồ thị hàm số \(y=-2x^2-3\left|x\right|+5\)
Từ đó tìm a để \(2x^2+3\left|x\right|+a=0\) có 4 nghiệm phân biệt
e) Tìm m để hàm số đồng biến trên khoảng (amvc;3)
lập bảng biến thiên và vẽ đồ thị của hàm số y=x^2 - 2x +1( Giải giúp e với)