a, Lập bảng biến thiên, vẽ đồ thị (P) của hàm số : y = - x^2 + 4x - 3
b, Dựa vào đồ thị, hãy:
+ Tìm x để y > 0 ; y < 0;
+ Tìm max, min của hàm số trên đoạn [0;4].
+ Biện luận theo m số nghiệm của pt x^2 - 4x = m
+Tìm k để pt -x^2 + 4x = k có nghiệm thỏa mãn [-1;3]
Bài 1.Cho hàm số
1.Lập bảng biến thiên và vẽ đồ thị
2.Biện luận số nghiệm của phương trình -x^2 - 2x= 3m bằng cách sử dụng đồ thị (P)
3.Tìm m để phương trình |-x^2-2x+1| có 4 nghiệm phân biệt bằng cách sử dụng đồ thị.
Cho hàm số: y=-3x2 + 2x+1(P)
a,Lập bảng biến thiên và vẽ đồ thị (P) của hàm số đã cho
b,Từ đồ thị (P), tìm x để: \(y\ge0;y< 0;y\le-4\)
c,Dùng đồ thị (P)biện luận theo m số nghiệm phương trình: -3x2 + 2x =m
d,Tìm GTLN,GTNN của hàm số tren R?Trên[2;7]?
Cho hàm số: \(y=x^2-3x-4\) có đồ thị là (P).
a) Lập bảng biến thiên và vẽ (P).
b) Tìm m để phương trình \(\left|x^2-3x-4\right|=2m-1\) có bốn nghiệm phân biệt.
c) Tìm m để phương trình \(x^2-3\left|x\right|-4=m\) có 3 nghiệm.
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Biện luận theo m số nghiệm của phương trình ( dựa vào đồ thị hàm số):
\(\left|-x^2+3x+2\right|=2m-1\)
a Tìm m để phương trình vô nghiệm: x2 - (2m - 3)x + m2 = 0.
b Tìm m để phương trình vô nghiệm: (m - 1)x2 - 2mx + m -2 = 0.
c Tìm m để phương trình vô nghiệm: (2 - m)x2 - 2(m + 1)x + 4 - m = 0
dùng đồ thị biện luận số nghiệm của phương trình |x^2-4|x||=|m^2-4m|
Cho hàm số \(y=-2x^2+\left(m-3\right)x+5-m\)
a) Lập bảng biến thiên và vẽ đồ thị hàm số với m=0
b) Dựa vào đồ thị, Tìm a để phương trình \(2x^2+3x+a=0\) có 2 nghiệm phân biệt
c) Dựa vào đồ thị, vẽ đồ thị hàm số \(y=\left|2x^2+3x-5\right|\)
d) Vẽ đồ thị hàm số \(y=-2x^2-3\left|x\right|+5\)
Từ đó tìm a để \(2x^2+3\left|x\right|+a=0\) có 4 nghiệm phân biệt
e) Tìm m để hàm số đồng biến trên khoảng (amvc;3)
1. Cho hàm số \(y=x^2-5x+4\)
a) Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số đã cho.
b) Tìm m để phương trình \(\left|x^2-5x+4\right|-2=m\) có bốn nghiệm phân biệt.
c) Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(f\left(x\right)=\left|x^2-5x+4\right|\) với x ∈ [0;5]
2. Cho hàm số \(y=-2x^2+4x\)
a) Vẽ đồ thị (P) của hàm số đã cho.
b) Tìm m để phương trình \(\left|x^2-2x\right|=m\) có ba nghiệm phân biệt.