a , \(\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{2.2-2\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}=\dfrac{\left(\sqrt{3}-1\right)^2}{\sqrt{2}}=\dfrac{\sqrt{3}-1}{\sqrt{2}}\)
a , \(\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{2.2-2\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}=\dfrac{\left(\sqrt{3}-1\right)^2}{\sqrt{2}}=\dfrac{\sqrt{3}-1}{\sqrt{2}}\)
Biến đổi biểu thức trong dấu căn thành bình phương 1 tổng hoặc 1 hiệu rồi phá bớt 1 lớp căn
1,\(\sqrt{25-4\sqrt{6}}\)
2,\(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}\)
Biến đổi biểu thức dưới căn thành bình phương của một hiệu rồi từ đó phá bớt một lớp căn:
\(\sqrt{38-12\sqrt{5}}\)
Bài 1: Rút gọn các biểu thức
a)\(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
b)\(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
c)\(\dfrac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
d)\(\dfrac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\)
e)\(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\left(\sqrt{x}-\sqrt{y}\right)^2\)
\(\sqrt{12-2\sqrt{35}}\)
Biến đổi biểu thức trong căn thành tổng 2 bình phương hay hiệu 2 bình phương
Câu 1: Rút gọn:
a) \(2\sqrt{18}-4\sqrt{50}-3\sqrt{32}\)
b) \(\sqrt{14-6\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)
c) \(\dfrac{\sqrt{10}+10}{1+\sqrt{10}}-\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}\)
Câu 2: Giải phương trình:
\(\sqrt{9x^2-30x+25}=5\)
Tính: ( Nhân cả tử lẫn mẫu với biểu thức liên hợp )
\(\dfrac{\sqrt{3}}{\sqrt{\sqrt{6}+}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{6}+1}+1}\)
\(\dfrac{2\sqrt{3}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\dfrac{2}{\sqrt{6}+\sqrt{10}}\)
Bài 1: Cho biểu thức A = 1 - \(\dfrac{\sqrt{x}}{1+\sqrt{x}}\), B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)+ \(\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\)- \(\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với x ≥ 0, x ≠ 4, x ≠ 9)
a, Tính giá trị của A biết x = 6-2\(\sqrt{5}\)
b, Rút gọn P = A : B
c, Tìm giá trị nhỏ nhất của P
Bài 1: Tính
1, \(A=\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right).\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
2, \(B=\left(\frac{3\sqrt{125}}{15}-\frac{10-4\sqrt{6}}{\sqrt{5}-2}\right).\frac{1}{\sqrt{5}}\)
3, \(C=\left(\frac{\sqrt{1000}}{100}-\frac{5\sqrt{2}-2\sqrt{5}}{2\sqrt{5}-8}\right).\frac{\sqrt{10}}{10}\)
4, \(D=\frac{1}{\sqrt{49+20\sqrt{6}}}-\frac{1}{\sqrt{49-20\sqrt{6}}}+\frac{1}{\sqrt{7-4\sqrt{3}}}\)
5, \(E=\frac{1}{\sqrt{4-2\sqrt{3}}}-\frac{1}{\sqrt{7-\sqrt{48}}}+\frac{3}{\sqrt{14-6\sqrt{5}}}\)
6, \(F=\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
7, \(G=\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}-\sqrt{11-2\sqrt{10}}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}+\sqrt{12+8\sqrt{2}}}}\)
* Giải phương trình
a. \(\sqrt{45x}-2\sqrt{20x}+2\sqrt{80x}=21\)
b. \(\sqrt{x^2-10x+25}=4\)
* Chứng minh đẳng thức
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=2\)