Bài 2 :
Ta có : \(\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{5-2\sqrt{5}\sqrt{3}+3}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(=\left(4+\sqrt{15}\right)\left(5+3-2\sqrt{15}\right)\)
\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)\)
\(=2\left(16-15\right)=2.1=2\)
Bài 1 :
a, ĐKXĐ : \(x\ge0\)
Ta có : \(PT\Leftrightarrow3\sqrt{5x}-4\sqrt{5x}+8\sqrt{5x}=21\)
\(\Leftrightarrow7\sqrt{5x}=21\)
\(\Leftrightarrow\sqrt{5x}=3\)
\(\Leftrightarrow x=\dfrac{9}{5}\left(TM\right)\)
Vậy ...
b, Ta có : \(PT\Leftrightarrow\sqrt{\left(x-5\right)^2}=4\)
\(\Leftrightarrow\left|x-5\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=4\\x-5=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)
Vậy ....
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}.\sqrt{4+\sqrt{15}}.\sqrt{2}.\left(\sqrt{5}-\sqrt{3}\right)\)
\(=1.\sqrt{8+2\sqrt{15}}.\left(\sqrt{5}-\sqrt{3}\right)=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)