\(B=\dfrac{\left(2^3.5^4.11\right).\left(2.5^2.11^2\right)}{\left(2^2.5^3.11\right)^2}\)
\(\Leftrightarrow B=\dfrac{2^3.5^4.11.2.5^2.11^2}{2^4.5^9.11^2}\)
\(\Leftrightarrow B=\dfrac{2^4.5^6.11^3}{2^4.5^9.11^2}\)
\(\Leftrightarrow B=\dfrac{11}{5^3}\)
\(\Leftrightarrow B=\dfrac{11}{125}\)
Vậy...
\(B=\dfrac{2^4\cdot5^6\cdot11^3}{2^4\cdot5^6\cdot11^2}=11\)
= \(\dfrac{\left(2^3.5^4.11\right).\left(2.5^2.11^2\right)}{\left(2^2.5^3.11\right)^2}\)
= \(\dfrac{2^4.5^6.11^3}{\left(2^2.5^3.11\right).\left(2^2.5^3.11\right)}\)
= \(\dfrac{2^4.5^6.11^3}{2^4.5^6.11^2}\)
= 11