Hint: \(pt\left(2\right)\Leftrightarrow\left(x-y-2\right)\left(x^2+y^2+xy-4x-2y+5\right)=0\)
Hint: \(pt\left(2\right)\Leftrightarrow\left(x-y-2\right)\left(x^2+y^2+xy-4x-2y+5\right)=0\)
giải hệ phương trình
a) \(\left\{{}\begin{matrix}\sqrt{2x^2+2y^2}+\sqrt{\frac{4}{3}\left(x^2+xy+y^2\right)}=2\left(x+y\right)\\\sqrt{3x+1}+\sqrt{5x+4}=3xy-y+3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{x+2y+1}+2\sqrt[3]{12x+7y+8}=2xy+x+5\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+xy+x+3=0\\\left(x+1\right)^2+3\left(y+1\right)+2\left(xy-\sqrt{x^2y+2y}\right)=0\end{matrix}\right.\)
Giải hệ pt
a) \(\left\{{}\begin{matrix}x+\dfrac{y}{\sqrt{1+x^2}+x}+y^2=0\\\dfrac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{x^2+4}+\sqrt{y^2+2y-4}=4\\\sqrt{x^2+9}+y=5\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}x+y+\sqrt{x^2-y^2}=12\\y\sqrt{x^2-y^2}=12\end{matrix}\right.\)
Giải hệ
a) \(\left\{{}\begin{matrix}x^2+y^2-2y-6+2\sqrt{2y+3}=0\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2y+2y+x=4xy\\\dfrac{1}{x^2}+\dfrac{1}{xy}+\dfrac{x}{y}=3\end{matrix}\right.\)
Giai các hệ bất phương trình sau :
a/ \(\left\{{}\begin{matrix}x^2+x+5< 0\\x^2-6x+1>0\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}2x^2+x-6>0\\3x^2-10x+3\ge0\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}-2x^2-5x+4< 0\\-x^2-3x+10>0\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}x^2+4x+3\ge0\\2x^2-x-10\le\\2x^2-5x+3>0\end{matrix}\right.0}\)
e/ \(-4\le\dfrac{x^2-2x-7}{x^2+1}\le1\)
f/ \(\left\{{}\begin{matrix}-x^2+4x-7< 0\\x^2-2x-1\ge0\end{matrix}\right.\)
Giải hệ bất phuơng trình:
\(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}+\dfrac{y}{x}=\dfrac{2\sqrt{x}}{y}+2\\y\left(\sqrt{x^2+1}-1\right)=\sqrt{3x^2+3}\end{matrix}\right.\)
1tìm m để hệ bất phương trình có nghiệm duy nhất \(\left\{{}\begin{matrix}2x-1\ge3\\x-m\le0\end{matrix}\right.\)
2hệ bất phương trình \(\left\{{}\begin{matrix}2x-1>0\\x-m< 2\end{matrix}\right.\)có nghiệm khi ??
3 hệ bất phương trình có nghiệm khi \(\left\{{}\begin{matrix}x+m\le0\\x^2-x+4< x^2-1\end{matrix}\right.\)
4 tìm tất cả các giá trị của m đề với mọi giá trị của x thỏa mãn \(-1\le\dfrac{x^2+5x+m}{2x^2-3x+2}< 7\)
5 với giá trị nào của m thì hệ có nghiệm \(\left\{{}\begin{matrix}x^2+y^2=1\\x+y\sqrt{3}< m\end{matrix}\right.\)
6 với giá trị nào của m thì hệ có nghiệm duy nhất \(\left\{{}\begin{matrix}x^2+2x+a\le0\\x^2-4x-6a\le0\end{matrix}\right.\)
Tìm m để hệ bất phương trình vô nghiệm
a) \(\left\{{}\begin{matrix}3x+4>x+9\\1-2x\le m-3x+1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x+7\ge8x+1\\m+5< 2x\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge x^2+7x+1\\2m\le8+5x\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}3x+5\ge x-1\\\left(x+2\right)^2\le\left(x-1\right)^2+9\\mx+1>\left(m-2\right)x+m\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}2\left(x-3\right)< 5\left(x-4\right)\\mx+1\le x-1\end{matrix}\right.\)
giải hệ:
1,\(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}2x+y=\dfrac{3}{x^2}\\2y+x=\dfrac{3}{y^2}\end{matrix}\right.\)