a. Em tự giải
b.
\(\Delta'=\left(m-1\right)^2-\left(m^2-6\right)=-2m+7\)
Pt đã cho có 2 nghiệm khi: \(-2m+7\ge0\Rightarrow m\le\dfrac{7}{2}\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-6\end{matrix}\right.\)
\(x_1^2+x_2^2=16\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=16\)
\(\Leftrightarrow4\left(m-1\right)^2-2\left(m^2-6\right)=16\)
\(\Leftrightarrow2m^2-8m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=4>\dfrac{7}{2}\left(loại\right)\end{matrix}\right.\)
Vậy \(m=0\)