Bài tập: Áp dụng quy tắc khai phương của một thương hãy tính:
1) \(\sqrt{\dfrac{169}{225}}\)
2) \(\sqrt{\dfrac{65^2-52^2}{121}}\)
3) \(\sqrt{\dfrac{27\left(a-4\right)^2}{48}}\)
4) \(\dfrac{\sqrt{12}}{\sqrt{588}}\)
5) \(\dfrac{\sqrt{15^5}}{\sqrt{3^3\cdot5^5}}\)
6) \(\left(2\sqrt{18}-3\sqrt{8}\right):\sqrt{2}\)
\(1,=\dfrac{13}{15}\\ 3,=\sqrt{\dfrac{3600}{121}}=\dfrac{60}{11}\\ 3,=\dfrac{3\left(a-4\right)}{4}\\ 4,=\dfrac{2\sqrt{3}}{14\sqrt{3}}=\dfrac{2}{14}=\dfrac{1}{7}\\ 5,=\dfrac{15}{\sqrt{84375}}=\dfrac{15}{75\sqrt{15}}=\dfrac{\sqrt{15}}{75}\\ 6,=2\sqrt{18}:\sqrt{2}-3\sqrt{8}:\sqrt{2}=6-6=0\)
1: =13/15
2: \(=\sqrt{\dfrac{13\cdot117}{121}}=\sqrt{\dfrac{13^2\cdot3^2}{11^2}}=\dfrac{39}{11}\)
3: \(=\sqrt{\dfrac{12}{588}}=\dfrac{1}{7}\)
4: \(=\sqrt{\dfrac{15^5}{5^5\cdot3^3}}=\sqrt{\dfrac{3^5}{3^3}}=3\)