a.
\(\left(\dfrac{1}{3}\right)^x=27\Rightarrow x=log_{\dfrac{1}{3}}27=-3\)
b.
\(4^x=\dfrac{\sqrt{2}}{8}\Rightarrow x=log_4\left(\dfrac{\sqrt{2}}{8}\right)=-\dfrac{5}{4}\)
c.
\(\left(0.2\right)^x=10\Rightarrow x=log_{0,2}10=-log_510\)
a.
\(\left(\dfrac{1}{3}\right)^x=27\Rightarrow x=log_{\dfrac{1}{3}}27=-3\)
b.
\(4^x=\dfrac{\sqrt{2}}{8}\Rightarrow x=log_4\left(\dfrac{\sqrt{2}}{8}\right)=-\dfrac{5}{4}\)
c.
\(\left(0.2\right)^x=10\Rightarrow x=log_{0,2}10=-log_510\)
Giải các phương trình mũ sau:
a) \(\left(0,75\right)^{2x-3}=\left(1\dfrac{1}{3}\right)^{5-x}\);
b) \(5^{x^2-5x-6}=1\);
c)\(\left(\dfrac{1}{7}\right)^{x^2-2x-3}=7^{x+1}\);
d) \(32^{\dfrac{x+5}{x-7}}=0,25.125^{\dfrac{x+17}{x-3}}\).
1, \(log_{5x}\dfrac{5}{x}+log^{2_{ }}_5x=1\)
2, \(log_5\left(5^x-1\right).log_{25}\left(5^{x+1}-5\right)=1\)
3, \(2\left(log_3x^{ }\right)^2=log_3x.log_3\left(\sqrt{2x+1}-1\right)\)
- giải hộ 3 phương trình trên với
\(\left(1+\dfrac{1}{2x}\right)\cdot lg3+lg2=lg\left(27-3^{\dfrac{1}{x}}\right)\)
giải phương trình logarit
Giải các phương trình sau bằng phương pháp đồ thị:
a) \(2^{-x}=3x+10\) b) \(\left(\dfrac{1}{3}\right)^{-x}=-2x+5\)
c) \(\left(\dfrac{1}{3}\right)^x=x+1\) d) \(3^x=11-x\)
Cho phương trình \(log_2\left(-x^2+4x+m\right)\)+\(log_{\dfrac{1}{2}}\left(x^2+2\right)\)< \(log_23\). Có bao nhiêu giá trị nguyên của tham số m sao cho bất phương trình đã cho nghiệm đúng mọi x thuộc [1;5]
GPT: \(\log_2\left(\sqrt{2x^2+1}+1\right)+\left|x\right|=\log_2\left(\sqrt{2x^2+1}-1\right)+\sqrt{2x^2+1}\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}\left(\sqrt{5}\right)^{2x}-\left(\sqrt{5}\right)^{3y}=\left(3y-2x\right)\left(6xy+12\right)\\4x^2+9y^2=16\end{matrix}\right.\)
Chủ đề là gợi ý cho bài này, nhưng mình linh cảm có thể giải một cách đơn giản :v
GPT: \(\log_2\left(\sqrt{x^2-5x+5}+1\right)+\log_3\left(x^2-5x+7\right)=2\)
\(\frac{1}{2}\log_2\left(x-1\right)^2+\log_{\frac{1}{2}}\left(x+4\right)=\log_2\left(3-x\right)\)