`#3107.\text{DN}`
c)
\(\dfrac{27^3+9^3+9^4}{37}\)
\(=\dfrac{9^3\cdot3^3+9^3+9^4}{37}\\ =\dfrac{9^3\cdot\left(3^3+1\right)+9^4}{37}\\ =\dfrac{9^3\cdot28+9^4}{37}\\ =\dfrac{9^3\cdot\left(28+9\right)}{37}\\ =\dfrac{9^3\cdot37}{37}\\ =9^3=729\)
d)
\(\dfrac{10^9\cdot81^{10}}{8^4\cdot25^5\cdot9^{10}}\)
\(=\dfrac{2^9\cdot5^9\cdot\left(3^2\right)^{10}}{\left(2^3\right)^4\cdot\left(5^2\right)^5\cdot\left(3^2\right)^{10}}\)
\(=\dfrac{2^9\cdot5^9\cdot3^{20}}{2^{12}\cdot5^{10}\cdot3^{20}}\)
\(=\dfrac{1}{2^3\cdot5}\\ =\dfrac{1}{8\cdot5}\\ =\dfrac{1}{40}\)
e)
\(\dfrac{9^4\cdot4^5\cdot25^3}{8^3\cdot27^2\cdot5^7}\)
\(=\dfrac{\left(3^2\right)^4\cdot\left(2^2\right)^5\cdot\left(5^2\right)^3}{\left(2^3\right)^3\cdot\left(3^3\right)^2\cdot5^7}\\ =\dfrac{3^8\cdot2^{10}\cdot5^6}{2^9\cdot3^6\cdot5^7}\\ =\dfrac{3^2\cdot2}{5}\\ =\dfrac{18}{5}\)
f)
\(\dfrac{5}{4}\cdot\dfrac{8}{15}+\dfrac{-5}{16}\cdot\dfrac{8}{15}-1\)
\(=\dfrac{8}{15}\cdot\left(\dfrac{5}{4}-\dfrac{5}{16}\right)-1\\ =\dfrac{8}{15}\cdot\dfrac{15}{16}-1\\ =\dfrac{8}{16}-1\\ =\dfrac{1}{2}-1\\ =-\dfrac{1}{2}\)
g)
\(4\dfrac{5}{9}\div\left(-\dfrac{5}{7}\right)+5\dfrac{4}{9}\div\left(-\dfrac{5}{7}\right)\\ =4\dfrac{5}{9}\cdot\left(-\dfrac{7}{5}\right)+5\dfrac{4}{9}\cdot\left(-\dfrac{7}{5}\right)\\ =\left(-\dfrac{7}{5}\right)\cdot\left(4\dfrac{5}{9}+5\dfrac{4}{9}\right)\\ =\left(-\dfrac{7}{5}\right)\cdot\left[\left(4+5\right)+\left(\dfrac{5}{9}+\dfrac{4}{9}\right)\right]\\ =\left(-\dfrac{7}{5}\right)\cdot\left(9+1\right)\\ =\left(-\dfrac{7}{5}\right)\cdot10\\ =-14\)
h)
\(\dfrac{2}{7}\cdot\dfrac{8}{19}+\dfrac{5}{7}\cdot\dfrac{8}{19}\\ =\dfrac{8}{19}\cdot\left(\dfrac{2}{7}+\dfrac{5}{7}\right)\\ =\dfrac{8}{19}\cdot\dfrac{7}{7}\\ =\dfrac{8}{19}\cdot1\\ =\dfrac{8}{19}\)
i)
\(\dfrac{9}{10}\cdot\dfrac{23}{11}-\dfrac{1}{11}\cdot\dfrac{9}{10}+\dfrac{9}{10}\\ =\dfrac{9}{10}\cdot\left(\dfrac{23}{11}-\dfrac{1}{11}+1\right)\\ =\dfrac{9}{10}\cdot\left(\dfrac{23}{11}-\dfrac{1}{11}+\dfrac{11}{11}\right)\\ =\dfrac{9}{10}\cdot\left(\dfrac{23-1+11}{11}\right)\\ =\dfrac{9}{10}\cdot\dfrac{33}{11}\\ =\dfrac{9}{10}\cdot3\\ =\dfrac{27}{10}\)