Bài 9:
a) Gọi 3 phần cần tìm lần lượt là a,b,c
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}\) = \(\frac{b}{3}\) = \(\frac{c}{5}\) = \(\frac{a+b+c}{2+3+5}\) = \(\frac{6200}{10}\) = 620
\(\Rightarrow\) \(\left[\begin{array}{nghiempt}a=620.2\\b=620.3\\c=620.5\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}a=1240\\b=1860\\c=3100\end{array}\right.\)
Vậy 3 phần cần tìm lần lượt là 1240 ; 1860 ; 3100
b) Gọi 3 phần cần tìm lần lượt là a, b,c
Vì a , b ,c tỉ lệ nghịch với 2 ; 3 ; 5 nên ta có:
a . 2 = b . 3 = c . 5 và a + b + c = 6200
Có: \(\frac{a}{\frac{1}{2}}\) = \(\frac{b}{\frac{1}{3}}\) = \(\frac{c}{\frac{1}{5}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{\frac{1}{2}}\) = \(\frac{b}{\frac{1}{3}}\) = \(\frac{c}{\frac{1}{5}}\) = \(\frac{a+b+c}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}\) = \(\frac{6200}{\frac{31}{30}}\) = 6200 . \(\frac{30}{31}\) = 6000
\(\Rightarrow\) \(\left[\begin{array}{nghiempt}a=6000.\frac{1}{2}\\b=6000.\frac{1}{3}\\c=6000.\frac{1}{5}\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}a=3000\\b=2000\\c=1200\end{array}\right.\)
Vậy 3 phần cần tìm lần lượt là 3000 ; 2000 ; 1200
Bài 10.
a) Vì y tỉ lệ tuận với x nên ta có công thức:
y = kx hay 8 = k6
=> k = \(\frac{8}{6}\) = \(\frac{4}{3}\)
Biểu diễn y theo x : y = \(\frac{4}{3}\) . x
b) Khi x = 9 thì y = \(\frac{4}{3}\) . 9 = 12
c) Khi y = - 4:
Ta có: - 4 = \(\frac{4}{3}\) . x
=> x = -4 : \(\frac{4}{3}\) = -4 . \(\frac{-3}{4}\) = -3
Bài 11.
a) Vì x và y tỉ lệ nghịch với nhau nên ta có công thức:
x . y = a hay 4 . (-15) = -60
Biểu diễn y theo x: y = \(\frac{-60}{x}\)
b) Khi x = 6 thì y = \(\frac{-60}{6}\) = -10
Khi x = -12 thì y = \(\frac{-60}{-12}\) = 5
c)
+) Khi y = -2
Ta có công thức: -2 = \(\frac{-60}{x}\)
=> x = \(\frac{-60}{-2}\) = 30
+) Khi y = 30
Tương tự ta có: x = \(\frac{-60}{30}\) = -2