Chương IV - Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Diệu Linh

Bài 7: Cho hàm số y = (m - 2)x + m + 3 với m ≠ 2

    a) Xác định giá trị của m để hàm số đồng biến, nghịch biến

    b) Tìm m để đồ thị hàm số cắt hai trục tọa độ tạo thành tam giác có diện tích bằng 1.

Giúp mk nha

Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 20:17

\(a,\) Đồng biến \(\Leftrightarrow m-2>0\Leftrightarrow m>2\)

Nghịch biến \(\Leftrightarrow m-2< 0\Leftrightarrow m< 2\)

\(b,\) PT giao Ox: \(y=0\Leftrightarrow\left(m-2\right)x=-\left(m+3\right)\Leftrightarrow x=\dfrac{m+3}{2-m}\Leftrightarrow A\left(\dfrac{m+3}{2-m};0\right)\Leftrightarrow OA=\left|\dfrac{m+3}{2-m}\right|\)

PT giao Oy: \(x=0\Leftrightarrow y=m+3\Leftrightarrow B\left(0;m+3\right)\Leftrightarrow OB=\left|m+3\right|\)

Theo đề: \(S_{OAB}=\dfrac{1}{2}OA\cdot OB=1\)

\(\Leftrightarrow\left|\dfrac{m+3}{2-m}\right|\left|m+3\right|=2\\ \Leftrightarrow\dfrac{\left(m+3\right)^2}{\left|2-m\right|}=2\\ \Leftrightarrow2\left|2-m\right|=\left(m+3\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}2\left(2-m\right)=\left(m+3\right)^2\left(m\le2\right)\\2\left(m-2\right)=\left(m+3\right)^2\left(m>2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m^2+8m+5=0\left(m\le2\right)\\m^2+4m+13=0\left(vô.n_0\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=-4+\sqrt{11}\left(n\right)\\m=-4-\sqrt{11}\left(n\right)\end{matrix}\right.\)

Vậy ...


Các câu hỏi tương tự
Lương Tuệ Nghi
Xem chi tiết
Etermintrude💫
Xem chi tiết
Thic ăn bún
Xem chi tiết
Nhã Trúc
Xem chi tiết
Ngọc :))
Xem chi tiết
Ngọc :))
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyen Nhi
Xem chi tiết
Lê Thị Phương Dung
Xem chi tiết