\(\Delta'=4-m-3=1-m\ge0\Rightarrow m\le1\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=m+3\end{matrix}\right.\)
\(x_1^2+x_2^2+\left(x_1x_2\right)^2=51\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+\left(x_1x_2\right)^2-51=0\)
\(\Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2-35=0\Rightarrow\left[{}\begin{matrix}x_1x_2=7\\x_1x_2=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m+3=7\\m+3=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=4>1\left(l\right)\\m=-8\end{matrix}\right.\)