a: cosA=(AB^2+AC^2-BC^2)/(2*AB*AC)
=>3^2+6^2-BC^2=2*3*6*cos60
=>BC=3căn 3cm
b: AC^2=AB^2+CB^2
=>ΔABC vuông tại B
=>góc B=90 độ; góc C=30 độ
c: C=3+6+3căn 3=9+3căn 3cm
S=1/2*3*6*sin60=9/2*căn 3(cm2)
a: cosA=(AB^2+AC^2-BC^2)/(2*AB*AC)
=>3^2+6^2-BC^2=2*3*6*cos60
=>BC=3căn 3cm
b: AC^2=AB^2+CB^2
=>ΔABC vuông tại B
=>góc B=90 độ; góc C=30 độ
c: C=3+6+3căn 3=9+3căn 3cm
S=1/2*3*6*sin60=9/2*căn 3(cm2)
cho tam giác ABC có A(1;3), B(-2;6), C(9;8)
tìm tọa độ trực tâm, tâm đường tròn ngoại tiếp, tâm đường tròn nội tiếp tam giác ABC
Bài 1: Cho tam giác ABC có AB = 2cm, BC= 4 cm, CA = 3 cm
Tính \(\overrightarrow{AB}.\overrightarrow{AC}\)
Bài 2: Cho tam giác ABC có A ( 1; -1), B ( 5,-3), C ( 2,0)
a) Chứng minh rằng : A,B,C là 3 đỉnh của tam giác
Tính chu vi và diện tích của tam giác
b) Tìm tọa độ M biết \(\overrightarrow{CM}=2\overrightarrow{AB}-3\overrightarrow{AC}\)
c) Tìm tâm bán kính đường tròn ngoại tiếp tam giác ABC
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với và . a) Tính tọa độ điểm G và vectơ ( với điểm G là trọng tâm tam giác ABC ). b) Tìm tọa độ điểm D là giao điểm của đường thẳng BC với trục hoành.
Cho tam giác ABC vuông tại A và góc ABC= 60 độ. Lấy M thuộc BC sao cho AB+BM=AC+CM. Tính góc CAM
Bài 2. Tính độ dài hai cạnh của một hình chữ nhật, biết tỉ số giữa các cạnh của nó bằng 0,6 và chu vi = 32cm. Bài 3. Cho hàm số y = f(x) = x2 – 1 . Tìm x sao cho f(x) = 1 . Bài 4. Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC tại D. a) Cho biết góc ACB = 400. Tính số đo góc ABD. b) Trên cạnh BC lấy điểm E sao cho BE = BA. Chứng minh ΔBAD = ΔBED và DE ⊥ BC c) Gọi F là giao điểm của BA và ED. Chứng minh rằng: ΔABC = ΔEBF d) Vẽ CK vuông góc với BD tại K. Chứng minh rằng ba điểm K, F, C thẳng hàng
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với và . a) Tính tọa độ điểm G và vectơ ( với điểm G là trọng tâm tam giác ABC ). b) Gọi I là trung điểm của BC. Tìm tọa độ điểm D sao cho tứ giác ABID là hình bình hành.
trong mặt phẳng Oxy cho 3 điểm A(1; 3), B(-1;4) và C(-3; 0) a)viết phương trình tham số đường thẳng BC b) viết phương trình đường tròn có tâm A và đi qua điểm B c) tìm tọa độ chân đường cao AH của tam giác ABC.
Cho đường tròn (O;R) đươngg kính AB cố định và đường kính CD thay đổi. Tiếp tuyến với đường tròn (O) tại B cắt AC tại E, AD tại F. Tìm tập hợp trực tâm các tam giác CEF và DEF
cho tam giác ABC có A(-1;1) ; B(1;3) ; C(1;-1)
a , tam gisc ABC là tam giác gì , tính chu vi và diện tích .
b , tìm tọa độ tâm I và tính bán kính đường tròn ngoại tiếp tam giác ABC
c , tìm tọa độ điểm D có hoành độ âm sao cho tam giác ADC vuông cân tại D .