Đề bài \(S=\dfrac{a+b}{2c}+\dfrac{b+c}{3a}+\dfrac{c+a}{4b}\) đúng hơn chứ nhỉ?
ĐKXĐ: \(\left\{{}\begin{matrix}b\ne-c\\c\ne-a\\a\ne-b\end{matrix}\right.\) và \(a,b,c\ne0\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}2a=b+c\\2b=c+a\\2c=a+b\end{matrix}\right.\)
\(\Rightarrow S=\dfrac{a+b}{2c}+\dfrac{b+c}{3a}+\dfrac{c+a}{4b}=\dfrac{2c}{2c}+\dfrac{2a}{3a}+\dfrac{2b}{4b}=1+\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{13}{6}\)