Ôn tập chương 1

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
htfziang

Bài 5: Cho \(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\) . Tính \(S=\dfrac{a+b}{2c}=\dfrac{b+c}{3a}=\dfrac{c+a}{4b}\) (với \(a,b,c\ne0\)). Lưu ý: áp dụng t/c dãy tỉ số bằng nhau cần điều kiện phân số mẫu khác 0)

cảm ơn nhiều ạaaaaaaaaaaaa ❤ 

Lấp La Lấp Lánh
6 tháng 11 2021 lúc 22:42

Đề bài \(S=\dfrac{a+b}{2c}+\dfrac{b+c}{3a}+\dfrac{c+a}{4b}\) đúng hơn chứ nhỉ?

Lấp La Lấp Lánh
6 tháng 11 2021 lúc 22:47

ĐKXĐ: \(\left\{{}\begin{matrix}b\ne-c\\c\ne-a\\a\ne-b\end{matrix}\right.\) và \(a,b,c\ne0\)

Áp dụng t/c dtsbn:

\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}2a=b+c\\2b=c+a\\2c=a+b\end{matrix}\right.\)

\(\Rightarrow S=\dfrac{a+b}{2c}+\dfrac{b+c}{3a}+\dfrac{c+a}{4b}=\dfrac{2c}{2c}+\dfrac{2a}{3a}+\dfrac{2b}{4b}=1+\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{13}{6}\)


Các câu hỏi tương tự
Đõ Phương Thảo
Xem chi tiết
Cô bé áo xanh
Xem chi tiết
phamphuongmai
Xem chi tiết
đinh văn việt
Xem chi tiết
Nguyễn Lê Huy Hoàng
Xem chi tiết
Ngô Minh Đức
Xem chi tiết
Lê Hào 7A4
Xem chi tiết
Ngô Minh Đức
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết