\(\Leftrightarrow\left\{{}\begin{matrix}xy-3x+2y-6=xy+1\\2x+2y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y-3x=7\\2x+2y=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=\dfrac{29}{10}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+2\right)\left(y-3\right)=xy+1\\2\left(x+y\right)\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}\left(x+2\right)\left(y-3\right)=xy+1\\2x+2y=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}xy-3x+2y-6=xy+1\\y=\dfrac{5-2x}{2}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}-3x+2y=7\\y=\dfrac{5-2x}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}-3x+2.\dfrac{5-2x}{2}=7\\y=\dfrac{5-2x}{2}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=-0,4\\y=2,9\end{matrix}\right.\)