Ôn tập Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh Lê

Bài 4: Cho tam giác đều ABC, gọi D, E, F là trung điểm của AB, AC, BC. Chứng minh tam giác DEF là tam giác đều.

Υσɾυshἱκα Υυɾἱ
26 tháng 2 2021 lúc 15:28

\(\Delta\)ABC là \(\Delta\)đều => AB=BC=CA mà D,E,F là trung điểm của AB,BC,CA=>AD=DB=BF=CF=CE=EA

xét \(\Delta\)ADE và \(\Delta\)BFD có:

AD=BF(cmt)

góc A=góc B(\(\Delta\)ABC là \(\Delta\)đều)

AE=BD(cmt)

=> \(\Delta\)ADE = \(\Delta\)BFD(c.g.c)(1)

xét \(\Delta\)BFD và\(\Delta\)CEF có:

BD=CE(cmt)

góc B=góc C(\(\Delta\)ABC là \(\Delta\)đều)

BF=CF(cmt)

=> \(\Delta\)ADE = \(\Delta\)BFD(c.g.c)(2)

từ(1) và(2)=> \(\Delta\)ADE = \(\Delta\)BFD= \(\Delta\)BFD=>DE=DF=FE=>\(\Delta\)DEF là \(\Delta\)đều

 

Nguyễn Lê Phước Thịnh
26 tháng 2 2021 lúc 22:38

Xét ΔABC có 

D là trung điểm của AB(gt)

F là trung điểm của BC(gt)

Do đó: DF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: DF//AC và \(DF=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔABC có

F là trung điểm của BC(gt)

E là trung điểm của AC(gt)

Do đó: FE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)Suy ra: FE//AB và \(FE=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Xét ΔABC có 

D là trung điểm của AB(gt)

E là trung điểm của AC(gt)

Do đó: DE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(3)

Ta có: ΔABC đều(gt)

nên AB=AC=BC(4)

Từ (1), (2), (3) và (4) suy ra DE=EF=DF

Xét ΔDEF có DE=DF=EF(cmt)

nên ΔDEF đều(Định nghĩa tam giác đều)


Các câu hỏi tương tự
Lê Ngọc Anh Khôi
Xem chi tiết
Nguyễn Thị Bích Ty
Xem chi tiết
Tạ Minh Trí
Xem chi tiết
Triss
Xem chi tiết
Doraemon N.W
Xem chi tiết
Huỳnh Kim Ngân
Xem chi tiết
Thiện Roblox
Xem chi tiết
lilith.
Xem chi tiết
Hồng Tuyến
Xem chi tiết