cho tam giác ABC cân tại A, Kẻ BE vuông góc với AC tại E và CF vuông góc với AB tại F . Chứng minh tam giác BFC= tam giác CEB . Gọi D là trung điểm của BC. Chứng minh tam giác BFD = tam giác CED và suy ra tam giác DEF cân. Cho biết AC=10(cm);BE=8(cm). Tính độ dài AE và EC. Cho góc A=40 độ . Tính góc AFE
a) Xét ΔBFC vuông tại F và ΔCEB vuông tại E có
BC chung
\(\widehat{FBC}=\widehat{ECB}\)(hai góc ở đáy của ΔBAC cân tại A)
Do đó: ΔBFC=ΔCEB(cạnh huyền-góc nhọn)