Ta có : BC = BH +CH = 64 + 81 =145 ( cm )
=> AB2 = HB . BC = 64 . 145 \(\Rightarrow\)AB=\(\sqrt{64.145=8\sqrt{145}}\left(cm\right)\)
AC = \(\sqrt{HC.BC}=\sqrt{81.145}=9\sqrt{145}\left(cm\right)\)
AH = \(\sqrt{BH.CH}=\sqrt{64.81}=72\left(cm\right)\)
Lại có : \(\sin B=\dfrac{AH}{BH}=\dfrac{72}{8\sqrt{145}}\Rightarrow GócB\approx48^o21'59.26''\)
\(\sin C=\dfrac{AH}{AC}=\dfrac{72}{9\sqrt{145}}\Rightarrow GócC\approx41^o38'0.74''\)