Ta có: \(\dfrac{HB}{HC}=\dfrac{9}{16}\)
nên \(HB=\dfrac{9}{16}HC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow\dfrac{9}{16}HC^2=48^2=2304\)
\(\Leftrightarrow HC^2=4096\)
hay HC=64(cm)
\(\Leftrightarrow HB=\dfrac{9}{16}\cdot64=36\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3600\\AC^2=6400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=60\left(cm\right)\\AC=80\left(cm\right)\end{matrix}\right.\)
Ta có: HB+HC=BC
nên BC=36+64=100(cm)