(\(\dfrac{\text{3}}{\text{2}}\).\(\sqrt[]{\dfrac{\text{4}}{\text{25}}+}\)3.\(\sqrt[]{\text{0,04}}\)):\(\sqrt[]{\dfrac{\text{9}}{\text{64}}}\)
Thực hiện phép tính:
a,\(\sqrt{25-9}\) b,\(\sqrt{0,01}-\sqrt{0,25}\)
c,\(\sqrt{2.2^2+4^2+5^2}\)
Tìm x, biết:
a) \(\left(5x+1\right)^2=\dfrac{36}{49}\)
b) \(\left[\left(-0,5\right)^3\right]^x=\dfrac{1}{64}\)
c) \(2020^{\left(x-2\right).\left(2x+3\right)}=1\)
d) \(\left(x+1\right)^{x+10}=\left(x+1\right)^{x+4}\) với \(x\in Z\)
e) \(\dfrac{3}{4}\sqrt{x}-\dfrac{1}{2}=\dfrac{1}{3}\)
tình nhanh
\(B=\dfrac{\left(\dfrac{1}{14}-\dfrac{\sqrt{2}}{7}+\dfrac{3\sqrt{2}}{35}\right).\left(-\dfrac{4}{15}\right)}{\left(\dfrac{1}{10}+\dfrac{3\sqrt{2}}{25}-\dfrac{\sqrt{2}}{5}\right).\dfrac{5}{7}}\)
Chứng minh rằng:
a) \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\)
b) \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}>10\)
c) \(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\)
Tính:
a) \(\sqrt{27}+\sqrt{75}-\sqrt{\dfrac{1}{3}}\)
b) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
c) \(\dfrac{3}{\sqrt{7}+\sqrt{2}}+\dfrac{2}{3+\sqrt{7}}+\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)
Thực hiện phép tính (tính nhanh nếu có thể):
4) \(4\cdot\left(\dfrac{-1}{2}\right)^3+\left|-1\dfrac{1}{2}+\sqrt{\dfrac{9}{4}}\right|:\sqrt{25}\)
5) \(\left[6-3\cdot\left(\dfrac{-1}{3}\right)^2+\sqrt{\dfrac{1}{4}}\right]:\sqrt{0,\left(9\right)}\)
Bài 1Trong các số sau đây số nào bằng \(\dfrac{3}{5}\)
a,\(\sqrt{\dfrac{3^2}{5^2}}\)
b,\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
c,\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}\)
Bài 2
a, \(x=\sqrt{3}+\sqrt{6}\)
\(y=2\sqrt{3}\)
b,\(x=\sqrt{3}+\sqrt{6}\)
\(y=\sqrt{2}+\sqrt{7}\)
c,\(x=-\dfrac{1}{2}\sqrt{\dfrac{1}{3}}\)
\(y=-\dfrac{1}{3}\sqrt{\dfrac{1}{2}}\)
Bài 3
\(a,\sqrt{x}-1=4\)
\(b,\sqrt{\left(x-1\right)^4}=16\)
Chứng minh rằng :\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}\)>10