Bài 2 :
a ) \(x^3-16x=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-16=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)
Vậy..........
b ) \(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\Rightarrow x=2\\x^2+10=0\left(loại\right)\end{matrix}\right.\)
Vậy .......................
c ) \(\left(2x-1\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\left(2x-1\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy.............
d ) \(x^2\left(x-2\right)-2x^2+8x-8=0\)
\(\Leftrightarrow x^3-2x^2-2x^2+8x-8=0\)
\(\Leftrightarrow x^3-4x^2+8x-8=0\)
\(\Leftrightarrow\) \(\left(x-2\right)^3=0\)
\(\Rightarrow x=2\)
Bài 2 :
a ) x3−16x=0x3−16x=0
⇔x(x2−16)=0⇔x(x2−16)=0
⇔[x=0x2−16=0⇒[x=0x=±4⇔[x=0x2−16=0⇒[x=0x=±4
Vậy..........
b ) x4−2x3+10x2−20x=0x4−2x3+10x2−20x=0
⇔x3(x−2)+10x(x−2)=0⇔x3(x−2)+10x(x−2)=0
⇔(x−2)(x3+10x)=0⇔(x−2)(x3+10x)=0
⇔x(x−2)(x2+10)=0⇔x(x−2)(x2+10)=0
⇔⎡⎢⎣x=0x−2=0⇒x=2x2+10=0(loại)⇔[x=0x−2=0⇒x=2x2+10=0(loại)
Vậy .......................
c ) (2x−1)2=(x+3)2(2x−1)2=(x+3)2
⇔(2x−1)2−(x+3)2=0⇔(2x−1)2−(x+3)2=0
⇔(2x−1−x−3)(2x−1+x+3)=0⇔(2x−1−x−3)(2x−1+x+3)=0
⇔(x−4)(3x+2)=0⇔(x−4)(3x+2)=0
⇔[x−4=03x+2=0⇒⎡⎣x=4x=−23⇔[x−4=03x+2=0⇒[x=4x=−23
Vậy.............
d ) x2(x−2)−2x2+8x−8=0x2(x−2)−2x2+8x−8=0
⇔x3−2x2−2x2+8x−8=0⇔x3−2x2−2x2+8x−8=0
⇔x3−4x2+8x−8=0⇔x3−4x2+8x−8=0
⇔⇔ (x−2)3=0(x−2)3=0
⇒x=2